On the robust stability of discrete-time systems

被引:3
作者
Nurges, Ü [1 ]
Rüstern, E [1 ]
机构
[1] Tallinn Univ Technol, Inst Cybernet, EE-0026 Tallinn, Estonia
来源
APCCAS '98 - IEEE ASIA-PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS: MICROELECTRONICS AND INTEGRATING SYSTEMS | 1998年
关键词
D O I
10.1109/APCCAS.1998.743796
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A sufficient stability condition for monic Schur polynomials is obtained via. so-called. reflection coefficients of polynomials and the discrete version of Kharitonov's weak theorem. The dicsrete Kharitonov theorem defines only (n-1)-dimensional stable hyperrectangle for n-degree monic polynomials. By the use of a linear Schur invariant transformation we put stable line segments through vertices of this hyperrectangle and find an n-dimensional stable polytope with all vertices on the stability boundary.
引用
收藏
页码:407 / 410
页数:4
相关论文
共 8 条
  • [1] Bartlett AC., 1988, MATH CONTROL SIGNALS, V1, P61, DOI [DOI 10.1007/BF02551236, 10.1007/BF02551236]
  • [2] Kharitonov V. L., 1978, Differentsial'nye Uravneniya, V14, P2086
  • [3] Robust stability of continuous-time difference systems
    Kharitonov, VL
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1996, 64 (05) : 985 - 990
  • [4] ROBUST SCHUR POLYNOMIAL STABILITY AND KHARITONOV THEOREM
    KRAUS, F
    ANDERSON, BDO
    MANSOUR, M
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1988, 47 (05) : 1213 - 1225
  • [5] NURGES U, 1996, P EST ACAD SCI, V45, P46
  • [6] NURGES U, 1998, P EST AC SCI PHYS MA, V47
  • [7] Oppenheim A. V., 1989, DISCRETE TIME SIGNAL
  • [8] EXTREME-POINT ROBUST STABILITY RESULTS FOR DISCRETE-TIME POLYNOMIALS
    PEREZ, F
    DOCAMPO, D
    ABDALLAH, C
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (07) : 1470 - 1472