Modeling high-energy radiation damage in nuclear and fusion applications

被引:24
作者
Trachenko, K. [1 ,2 ]
Zarkadoula, E. [1 ,2 ]
Todorov, I. T. [3 ]
Dove, M. T. [1 ,4 ]
Dunstan, D. J. [1 ]
Nordlund, K. [5 ]
机构
[1] Univ London, Sch Phys, London E1 4NS, England
[2] Univ Southampton Highfield, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England
[3] CCLRC Daresbury Lab, Computat Sci & Engn Dept, Daresbury WA4 4AD, England
[4] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England
[5] Univ Helsinki, Accelerator Lab, FIN-00014 Helsinki, Finland
基金
英国工程与自然科学研究理事会;
关键词
Radiation damage; Molecular dynamics; Collision cascades; Nuclear energy; Nuclear waste; Fusion energy; DISPLACEMENT CASCADES; MOLECULAR-DYNAMICS; INTERATOMIC POTENTIALS; IRON; IRRADIATION; IMMOBILIZATION; AMORPHIZATION; CRYSTALLINE; APPROPRIATE; SIMULATION;
D O I
10.1016/j.nimb.2011.12.058
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We discuss molecular dynamics (MD) simulations of high-energy radiation damage in materials relevant for encapsulation of nuclear waste and materials to be used in fusion reactors, including several important oxides and iron. We study various stages of evolution and relaxation of 100-200 key collision cascades, and identify reversible elastic and irreversible inelastic structural changes. The elastic expansion of the lattice around the cascade is explained in terms of anharmonicity of interatomic interactions. The remaining irreversible structural change is related to resistance to amorphization by radiation damage. This resistance is quantified by the number of remaining defect atoms in the damaged structure. We discuss how MD simulations can predict experimental resistance to amorphization, including the important case of highly resistant materials. Finally, we discuss our current work to simulate radiation damage of MeV energies and system sizes of the order of billion atoms using massive parallel computing facilities. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:6 / 13
页数:8
相关论文
共 45 条
[1]  
Averback RS, 1998, SOLID STATE PHYS, V51, P281
[2]  
Bacon D.J., 2003, J NUCL MATER, V152, P323
[3]   Computer simulation of cascade damage in α-iron with carbon in solution [J].
Calder, Andrew F. ;
Bacon, David J. ;
Barashev, Alexander V. ;
Osetsky, Yuri N. .
JOURNAL OF NUCLEAR MATERIALS, 2008, 382 (2-3) :91-95
[4]   ROLE OF THERMAL SPIKES IN ENERGETIC DISPLACEMENT CASCADES [J].
DELARUBIA, TD ;
AVERBACK, RS ;
BENEDEK, R ;
KING, WE .
PHYSICAL REVIEW LETTERS, 1987, 59 (17) :1930-1933
[5]   Dynamic annealing of defects in irradiated zirconia-based ceramics [J].
Devanathan, Ram ;
Weber, William J. .
JOURNAL OF MATERIALS RESEARCH, 2008, 23 (03) :593-597
[6]  
Dudarev SL, 2009, J NUCL MATER, V1, P386
[7]  
Duffy D.M., 2009, J NUCL MATER, V19, P386
[8]   The degree and nature of radiation damage in zircon observed by 29Si nuclear magnetic resonance [J].
Farnan, I ;
Salje, EKH .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (04) :2084-2090
[9]   Impact of self-irradiation damage on the aqueous durability of zircon (ZrSiO4):: implications for its suitability as a nuclear waste form [J].
Geisler, T ;
Trachenko, K ;
Ríos, S ;
Dove, MT ;
Salje, EKH .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (37) :L597-L605
[10]   Ion beam radiation damage effects in rutile (TiO2) [J].
Hartmann, T ;
Wang, LM ;
Weber, WJ ;
Yu, N ;
Sickafus, KE ;
Mitchell, JN ;
Wetteland, CJ ;
Nastasi, MA ;
Hollander, MG ;
Baker, NP ;
Evans, CR ;
Tesmer, JR ;
Maggiore, CJ .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1998, 141 (1-4) :398-403