Aseismic sliding of active faults by pressure solution creep: Evidence from the San Andreas Fault Observatory at Depth

被引:121
作者
Gratier, J. -P. [1 ]
Richard, J. [1 ]
Renard, F. [1 ,2 ]
Mittempergher, S. [3 ]
Doan, M. -L. [1 ]
Di Toro, G. [3 ,4 ]
Hadizadeh, J. [5 ]
Boullier, A. -M. [1 ]
机构
[1] Univ Grenoble 1, CNRS, ISTerre Inst Sci Terre Observ, F-38041 Grenoble, France
[2] Univ Oslo, N-0316 Oslo, Norway
[3] Univ Padua, I-35137 Padua, Italy
[4] Ist Nazl Geofis & Vulcanol, I-00143 Rome, Italy
[5] Univ Louisville, Dept Geog & Geosci, Louisville, KY 40292 USA
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
PARKFIELD EARTHQUAKE; SERPENTINITE; STRENGTH; WEAKNESS; GOUGE; ZONE;
D O I
10.1130/G32073.1
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Active faults in the upper crust can either slide steadily by aseismic creep, or abruptly causing earthquakes. Creep relaxes the stress and prevents large earthquakes from occurring. Identifying the mechanisms controlling creep, and their evolution with time and depth, represents a major challenge for predicting the behavior of active faults. Based on microstructural studies of rock samples collected from the San Andreas Fault Observatory at Depth (California), we propose that pressure solution creep, a pervasive deformation mechanism, can account for aseismic creep. Experimental data on minerals such as quartz and calcite are used to demonstrate that such creep mechanism can accommodate the documented 20 mm/yr aseismic displacement rate of the San Andreas fault creeping zone. We show how the interaction between fracturing and sealing controls the pressure solution rate, and discuss how such a stress-driven mass transfer process is localized along some segments of the fault.
引用
收藏
页码:1131 / 1134
页数:4
相关论文
共 24 条
[1]   Development of schistosity by dissolution-crystallization in a Californian serpentinite gouge [J].
Andreani, M ;
Boullier, AM ;
Gratier, JP .
JOURNAL OF STRUCTURAL GEOLOGY, 2005, 27 (12) :2256-2267
[2]  
[Anonymous], 2002, ACKNOWLEDGMENTS
[3]   DIFFUSION-ACCOMMODATED FLOW AND SUPERPLASTICITY [J].
ASHBY, MF ;
VERRALL, RA .
ACTA METALLURGICA, 1973, 21 (02) :149-163
[4]  
Carpenter BM, 2011, NAT GEOSCI, V4, P251, DOI [10.1038/ngeo1089, 10.1038/NGEO1089]
[5]   Fault zone fabric and fault weakness [J].
Collettini, Cristiano ;
Niemeijer, Andre ;
Viti, Cecilia ;
Marone, Chris .
NATURE, 2009, 462 (7275) :907-U98
[6]   Afterslip (and only afterslip) following the 2004 Parkfield, California, earthquake [J].
Freed, Andrew M. .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (06)
[7]   Fault Permeability and Strength Evolution Related to Fracturing and Healing Episodic Processes (Years to Millennia): the Role of Pressure Solution [J].
Gratier, J. -P. .
OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2011, 66 (03) :491-506
[8]   A pressure solution creep law for quartz from indentation experiments [J].
Gratier, Jean-Pierre ;
Guiguet, Robert ;
Renard, Francois ;
Jenatton, Liliane ;
Bernard, Dominique .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2009, 114
[9]   Modeling fluid transfer along California faults when integrating pressure solution crack sealing and compaction processes [J].
Gratier, JP ;
Favreau, P ;
Renard, F .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2003, 108 (B2)
[10]   Stress orientations and magnitudes in the SAFOD pilot hole [J].
Hickman, S ;
Zoback, M .
GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (15) :L15S121-4