Bayesian sensor image fusion using local linear generative models

被引:21
作者
Sharma, RK
Leen, TK
Pavel, M
机构
[1] Oregon Grad Inst Sci & Technol, Dept Elect & Comp Engn, Portland, OR 97291 USA
[2] Oregon Grad Inst Sci & Technol, Dept Comp Sci & Engn, Portland, OR USA
基金
美国国家科学基金会;
关键词
image fusion; sensor fusion; probabilistic fusion; local linear models; infrared imaging; maximum a posteriori fusion; multisensor fusion; sensors; image formation model;
D O I
10.1117/1.1384886
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a probabilistic method for fusion of images produced by multiple sensors. The approach is based on an image formation model in which the sensor images are noisy, locally linear functions of an underlying true scene (latent variable). A Bayesian framework then provides for maximum-likelihood or maximum a posteriori estimates of the true scene from the sensor images. Least-squares estimates of the parameters of the image formation model involve (local) second-order image statistics, and are related to local principal-component analysis. We demonstrate the efficacy of the method on images from visible-band and infrared sensors. (C) 2001 Society of Photo-Optical Instrumentation Engineers.
引用
收藏
页码:1364 / 1376
页数:13
相关论文
共 20 条
  • [1] [Anonymous], P IM REG WORKSH
  • [2] [Anonymous], 1997, NCRG97003 AST U
  • [3] [Anonymous], NCRG97010 AST U
  • [4] [Anonymous], ICCV 1993
  • [5] Basilevsky A., 1994, Statistical Factor Analysis and Related Methods: Theory and Applications
  • [6] BURGESS MA, 1993, DOTFAARD9340 RES DEV
  • [7] BURT PJ, 1992, SOC INF DISPL, P467
  • [8] Clark, 1990, DATA FUSION SENSORY
  • [9] Harman H.H., 1976, Modern Factor Analysis
  • [10] SOME CONTRIBUTIONS TO MAXIMUM LIKELIHOOD FACTOR ANALYSIS
    JORESKOG, KG
    [J]. PSYCHOMETRIKA, 1967, 32 (04) : 443 - &