Oxidative stress responses of the yeast Saccharomyces cerevisiae

被引:15
作者
Jamieson, DJ [1 ]
机构
[1] Heriot Watt Univ, Dept Biol Sci, Edinburgh EH14 4AS, Midlothian, Scotland
关键词
Saccharomyces cerevisiae; oxidative stress; stress response; signal transduction;
D O I
10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.3.CO;2-J
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
All aerobically growing organisms suffer exposure to oxidative stress, caused by partially reduced forms of molecular oxygen, known as reactive oxygen species (ROS). These are highly reactive and capable of damaging cellular constituents such as DNA, lipids and proteins. Consequently, cells from many different organisms have evolved mechanisms to protect their components against ROS. This review concentrates on the oxidant defence systems of the budding yeast Saccharomyces cerevisiae, which appears to have a number of inducible adaptive stress responses to oxidants, such as H2O2, superoxide anion and lipid peroxidation products. The oxidative stress responses appear to be regulated, at least in part, at the level of transcription and there is considerable overlap between them and many diverse stress responses, allowing the yeast cell to integrate its response towards environmental stress. (C) 1998 John Wiley & Sons, Ltd.
引用
收藏
页码:1511 / 1527
页数:17
相关论文
共 156 条
[1]   DIETARY CARCINOGENS AND ANTICARCINOGENS - OXYGEN RADICALS AND DEGENERATIVE DISEASES [J].
AMES, BN .
SCIENCE, 1983, 221 (4617) :1256-1264
[2]  
AYUB MAZ, 1992, APPL MICROBIOL BIOT, V37, P615
[3]   OXYGEN-TOXICITY IN A POLYAMINE-DEPLETED SPE2-DELTA MUTANT OF SACCHAROMYCES-CEREVISIAE [J].
BALASUNDARAM, D ;
TABOR, CW ;
TABOR, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (10) :4693-4697
[4]   SPERMIDINE OR SPERMINE IS ESSENTIAL FOR THE AEROBIC GROWTH OF SACCHAROMYCES-CEREVISIAE [J].
BALASUNDARAM, D ;
TABOR, CW ;
TABOR, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (13) :5872-5876
[5]   THE COPPER, ZINC-SUPEROXIDE DISMUTASE GENE OF SACCHAROMYCES-CEREVISIAE - CLONING, SEQUENCING, AND BIOLOGICAL-ACTIVITY [J].
BERMINGHAMMCDONOGH, O ;
GRALLA, EB ;
VALENTINE, JS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (13) :4789-4793
[6]  
BOORSTEIN WR, 1990, J BIOL CHEM, V265, P18912
[7]  
BOSSIER P, 1993, J BIOL CHEM, V268, P23640
[8]   Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae [J].
Boy-Marcotte, E ;
Perrot, M ;
Bussereau, F ;
Boucherie, H ;
Jacquet, M .
JOURNAL OF BACTERIOLOGY, 1998, 180 (05) :1044-1052
[9]   Cadmium is an inducer of oxidative stress in yeast [J].
Brennan, RJ ;
Schiestl, RH .
MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 1996, 356 (02) :171-178
[10]   SKN7, A YEAST MULTICOPY SUPPRESSOR OF A MUTATION AFFECTING CELL-WALL BETA-GLUCAN ASSEMBLY, ENCODES A PRODUCT WITH DOMAINS HOMOLOGOUS TO PROKARYOTIC 2-COMPONENT REGULATORS AND TO HEAT-SHOCK TRANSCRIPTION FACTORS [J].
BROWN, JL ;
NORTH, S ;
BUSSEY, H .
JOURNAL OF BACTERIOLOGY, 1993, 175 (21) :6908-6915