Computational analysis of storage synthesis in developing Brassica napus L. (oilseed rape) embryos: flux variability analysis in relation to 13C metabolic flux analysis

被引:68
作者
Hay, Jordan [1 ]
Schwender, Joerg [1 ]
机构
[1] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA
关键词
flux balance analysis; carbon partitioning; constraint-based model; linear program; stoichiometric model; CENTRAL CARBOHYDRATE-METABOLISM; DEVELOPING SOYBEAN COTYLEDONS; NUCLEAR-MAGNETIC-RESONANCE; SUSPENSION CELL-CULTURES; BALANCE ANALYSIS; GLUTAMATE-DEHYDROGENASE; NITROGEN ASSIMILATION; ESCHERICHIA-COLI; DEVELOPING SEEDS; PLANT;
D O I
10.1111/j.1365-313X.2011.04611.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plant oils are an important renewable resource, and seed oil content is a key agronomical trait that is in part controlled by the metabolic processes within developing seeds. A large-scale model of cellular metabolism in developing embryos of Brassica napus (bna572) was used to predict biomass formation and to analyze metabolic steady states by flux variability analysis under different physiological conditions. Predicted flux patterns are highly correlated with results from prior C-13 metabolic flux analysis of B. napus developing embryos. Minor differences from the experimental results arose because bna572 always selected only one sugar and one nitrogen source from the available alternatives, and failed to predict the use of the oxidative pentose phosphate pathway. Flux variability, indicative of alternative optimal solutions, revealed alternative pathways that can provide pyruvate and NADPH to plastidic fatty acid synthesis. The nutritional values of different medium substrates were compared based on the overall carbon conversion efficiency (CCE) for the biosynthesis of biomass. Although bna572 has a functional nitrogen assimilation pathway via glutamate synthase, the simulations predict an unexpected role of glycine decarboxylase operating in the direction of NH4+ assimilation. Analysis of the light-dependent improvement of carbon economy predicted two metabolic phases. At very low light levels small reductions in CO2 efflux can be attributed to enzymes of the tricarboxylic acid cycle (oxoglutarate dehydrogenase, isocitrate dehydrogenase) and glycine decarboxylase. At higher light levels relevant to the C-13 flux studies, ribulose-1,5-bisphosphate carboxylase activity is predicted to account fully for the light-dependent changes in carbon balance.
引用
收藏
页码:513 / 525
页数:13
相关论文
共 60 条
[1]   The role of light in soybean seed filling metabolism [J].
Allen, Doug K. ;
Ohlrogge, John B. ;
Shachar-Hill, Yair .
PLANT JOURNAL, 2009, 58 (02) :220-234
[2]   Carbon conversion efficiency and central metabolic fluxes in developing sunflower (Helianthus annuus L.) embryos [J].
Alonso, Ana P. ;
Goffman, Fernando D. ;
Ohlrogge, John B. ;
Shachar-Hill, Yair .
PLANT JOURNAL, 2007, 52 (02) :296-308
[3]   Contribution of glutamate dehydrogenase to mitochondrial glutamate metabolism studied by 13C and 31P nuclear magnetic resonance [J].
Aubert, S ;
Bligny, R ;
Douce, R ;
Gout, E ;
Ratcliffe, RG ;
Roberts, JKM .
JOURNAL OF EXPERIMENTAL BOTANY, 2001, 52 (354) :37-45
[4]  
Baud Sebastien, 2008, Arabidopsis Book, V6, pe0113, DOI 10.1199/tab.0113
[5]   Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox [J].
Becker, Scott A. ;
Feist, Adam M. ;
Mo, Monica L. ;
Hannum, Gregory ;
Palsson, Bernhard O. ;
Herrgard, Markus J. .
NATURE PROTOCOLS, 2007, 2 (03) :727-738
[6]   Flux analysis of underdetermined metabolic networks: The quest for the missing constraints [J].
Bonarius, HPJ ;
Schmid, G ;
Tramper, J .
TRENDS IN BIOTECHNOLOGY, 1997, 15 (08) :308-314
[7]  
Boyle NR, 2009, PLANT METABOLIC NETWORKS, P211, DOI 10.1007/978-0-387-78745-9_8
[8]   Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii [J].
Boyle, Nanette R. ;
Morgan, John A. .
BMC SYSTEMS BIOLOGY, 2009, 3
[9]   Synergy between 13C-metabolic flux analysis and flux balance analysis for understanding metabolic adaption to anaerobiosis in E. coli [J].
Chen, Xuewen ;
Alonso, Ana P. ;
Allen, Doug K. ;
Reed, Jennifer L. ;
Shachar-Hill, Yair .
METABOLIC ENGINEERING, 2011, 13 (01) :38-48
[10]   Storage oil breakdown during embryo development of Brassica napus (L.) [J].
Chia, TYP ;
Pike, MJ ;
Rawsthorne, S .
JOURNAL OF EXPERIMENTAL BOTANY, 2005, 56 (415) :1285-1296