Potassium in the Grape (Vitis vinifera L.) Berry: Transport and Function

被引:140
作者
Rogiers, Suzy Y. [1 ,2 ,3 ]
Coetzee, Zelmari A. [2 ,3 ,4 ]
Walker, Rob R. [3 ,4 ,5 ,6 ]
Deloire, Alain [2 ,3 ,7 ]
Tyerman, Stephen D. [3 ,6 ]
机构
[1] New South Wales Dept Primary Ind, Wagga Wagga, NSW, Australia
[2] Charles Sturt Univ, Natl Wine & Grape Ind Ctr, Wagga Wagga, NSW, Australia
[3] Univ Adelaide, Australian Res Council, Training Ctr Innovat Wine Prod, Glen Osmond, SA, Australia
[4] Charles Sturt Univ, Sch Agr & Wine Sci, Wagga Wagga, NSW, Australia
[5] Agr & Food CSIRO, Glen Osmond, SA, Australia
[6] Univ Adelaide, Sch Agr Food & Wine, Urrbrae, SA, Australia
[7] SupAgro, Dept Biol Ecol, Montpellier, France
关键词
potassium; grapevine; Vitis vinifera; berry; fruit; ripening; phloem; xylem; CABERNET-SAUVIGNON GRAPEVINES; PROGRAMMED CELL-DEATH; POLLEN-TUBE GROWTH; K+ CHANNEL; REACTIVE OXYGEN; CV SHIRAZ; DEVELOPMENTAL-CHANGES; SOLUTE ACCUMULATION; PHLOEM TRANSPORT; ABSCISIC-ACID;
D O I
10.3389/fpls.2017.01629
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
K+ is the most abundant cation in the grape berry. Here we focus on the most recent information in the long distance transport and partitioning of K+ within the grapevine and postulate on the potential role of K+ in berry sugar accumulation, berry water relations, cellular growth, disease resistance, abiotic stress tolerance and mitigating senescence. By integrating information from several different plant systems we have been able to generate new hypotheses on the integral functions of this predominant cation and to improve our understanding of how these functions contribute to grape berry growth and ripening. Valuable contributions to the study of K+ in membrane stabilization, turgor maintenance and phloem transport have allowed us to propose a mechanistic model for the role of this cation in grape berry development.
引用
收藏
页数:19
相关论文
共 245 条
[1]  
Ache P, 2001, PLANT J, V27, P571, DOI 10.1046/j.1365-313X.2001.t01-1-01116.x
[2]  
Agasse A., 2009, GRAPEVINE MOL PHYSL, V2nd, P105, DOI [DOI 10.1007/978-90-481-2305-65, 10.1007/978-90-481-2305-6_5, DOI 10.1007/978-90-481-2305-6_5, DOI 10.1007/978-90-481-2305-6-5]
[3]   Identification and functional expression in yeast of a grape berry sucrose carrier [J].
Ageorges, A ;
Issaly, R ;
Picaud, S ;
Delrot, S ;
Romieu, C .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2000, 38 (03) :177-185
[4]   Cellular and tissue distribution of potassium: Physiological relevance, mechanisms and regulation [J].
Ahmad, Izhar ;
Maathuis, Frans J. M. .
JOURNAL OF PLANT PHYSIOLOGY, 2014, 171 (09) :708-714
[5]   Root K+ Acquisition in Plants: The Arabidopsis thaliana Model [J].
Aleman, Fernando ;
Nieves-Cordones, Manuel ;
Martinez, Vicente ;
Rubio, Francisco .
PLANT AND CELL PHYSIOLOGY, 2011, 52 (09) :1603-1612
[6]   Potassium fertilization enhances pepper fruit quality [J].
Angeles Botella, M. ;
Arevalo, Laura ;
Mestre, Teresa C. ;
Rubio, Francisco ;
Garcia-Sanchez, Francisco ;
Rivero, Rosa M. ;
Martinez, Vicente .
JOURNAL OF PLANT NUTRITION, 2017, 40 (02) :145-155
[7]  
[Anonymous], 1987, ANN BOT, DOI DOI 10.1093/AOB/MCH063
[8]   Going beyond nutrition: Regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment [J].
Anschutz, Uta ;
Becker, Dirk ;
Shabala, Sergey .
JOURNAL OF PLANT PHYSIOLOGY, 2014, 171 (09) :670-687
[9]   Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter [J].
Apse, MP ;
Sottosanto, JB ;
Blumwald, E .
PLANT JOURNAL, 2003, 36 (02) :229-239
[10]  
ARCHER E, 1989, South African Journal for Enology and Viticulture, V10, P74