THREE DIMENSIONAL SEGMENTATION OF FLUORESCENCE MICROSCOPY IMAGES USING ACTIVE SURFACES

被引:0
作者
Lorenz, Kevin S. [1 ]
Salama, Paul [2 ]
Dunn, Kenneth W. [3 ]
Delp, Edward J. [1 ]
机构
[1] Purdue Univ, Sch Elect & Comp Engn, Video & Image Proc Lab, W Lafayette, IN 47907 USA
[2] Indiana Univ, Dept Elect & Comp Engn, Indianapolis, IN 46202 USA
[3] Indiana Univ Sch Med, Div Nephrol, Indianapolis, IN 46202 USA
来源
2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013) | 2013年
关键词
image segmentation; biomedical optical imaging; optical microscopy; LEVEL SET FRAMEWORK; CONTOURS; MODEL; GRADIENT; CELLS; EDGES;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Three dimensional image volumes collected using optical microscopy exhibit many characteristics that cause difficulty in segmentation. These include decreasing image contrast with increasing tissue depth, poor edge detail with regard to cellular structures, and limited spatial resolution. This paper describes a three dimensional segmentation method utilizing active surfaces to segment microscopy image volumes. We demonstrate this method on a three dimensional sequence of images acquired from stationary/stabilized kidney tissue of a rat. Results from this method are compared against a prior pseudo-three dimensional segmentation method that analyzes slices on a single image-by-image basis, as well as against another native three dimensional segmentation method.
引用
收藏
页码:1153 / 1157
页数:5
相关论文
共 50 条
[41]   Fluorescence microscopy three-dimensional depth variant point spread function interpolation using Zernike moments [J].
Maalouf, Elie ;
Colicchio, Bruno ;
Dieterlen, Alain .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2011, 28 (09) :1864-1870
[42]   Three-dimensional numerical schemes for the segmentation of the psoas muscle in X-ray computed tomography images [J].
Paolucci, Giulio ;
Cama, Isabella ;
Campi, Cristina ;
Piana, Michele .
BMC MEDICAL IMAGING, 2024, 24 (01)
[43]   Combined Detection and Segmentation of Cell Nuclei in Microscopy Images Using Deep Learning [J].
Ram, Sundaresh ;
Nguyen, Vicky T. ;
Limesand, Kirsten H. ;
Rodriguez, Jeffrey J. .
2020 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION (SSIAI 2020), 2020, :26-29
[44]   A hybrid segmentation framework using level set method for confocal microscopy images [J].
Xue, Quan ;
Degrelle, Severine ;
Wang, Juhui ;
Hue, Isabelle ;
Guillomot, Michel .
BIOSIGNALS 2008: PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON BIO-INSPIRED SYSTEMS AND SIGNAL PROCESSING, VOL II, 2008, :277-+
[45]   Segmentation of Rays in Wood Microscopy Images Using the U-Net Model [J].
Ergun, Halime .
BIORESOURCES, 2021, 16 (01) :721-728
[46]   SEGMENTATION AND REGISTRATION BASED ANALYSIS OF MICROSCOPY IMAGES [J].
Lorenz, Kevin S. ;
Serrano, Francisco ;
Salama, Paul ;
Delp, Edward J. .
2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, :4213-+
[47]   Automated segmentation of Drosophila RNAi fluorescence cellular images using deformable models [J].
Xiong, Guanglei ;
Zhou, Xiaobo ;
Ji, Liang .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2006, 53 (11) :2415-2424
[48]   Automated segmentation of Drosophila RNAi fluorescence cellular images using graph cuts [J].
Chen, Cheng ;
Li, Houqiang ;
Zhou, Xiaobo .
ADVANCES IN MULTIMEDIA MODELING, PT 1, 2007, 4351 :116-125
[49]   Multistage morphological segmentation of bright-field and fluorescent microscopy images [J].
Korzynska, A. ;
Iwanowski, M. .
OPTO-ELECTRONICS REVIEW, 2012, 20 (02) :174-186
[50]   Deep Learning Approaches for Head and Operculum Segmentation in Zebrafish Microscopy Images [J].
Kumar, Navdeep ;
Carletti, Alessio ;
Gavaia, Paulo J. ;
Muller, Marc ;
Cancela, M. Leonor ;
Geurts, Pierre ;
Maree, Raphael .
COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2021, PT 1, 2021, 13052 :154-164