Comparing Three Approaches of Evapotranspiration Estimation in Mixed Urban Vegetation: Field-Based, Remote Sensing-Based and Observational-Based Methods

被引:48
作者
Nouri, Hamideh [1 ]
Glenn, Edward P. [2 ]
Beecham, Simon [1 ]
Boroujeni, Sattar Chavoshi [1 ,3 ]
Sutton, Paul [1 ]
Alaghmand, Sina [1 ,4 ]
Noori, Behnaz [5 ]
Nagler, Pamela [6 ]
机构
[1] Univ South Australia, Sch Nat & Built Environm, Adelaide, SA 5095, Australia
[2] Univ Arizona, Dept Soil Water & Environm Sci, Tucson, AZ 85726 USA
[3] Soil Conservat & Watershed Management Res Inst Ir, Tehran 113613445, Iran
[4] Monash Univ Malaysia, Discipline Civil Engn, Sch Engn, Selangor 47500, Malaysia
[5] Univ Tehran, Coll Agr & Nat Resources, Tehran 3158777871, Iran
[6] US Geol Survey, Southwest Biol Sci Ctr, Tucson, AZ 85721 USA
关键词
evapotranspiration; urban irrigation; drainage; lysimeter; Neutron Moisture Meter (NMM); soil water balance; MOISTURE METER CALIBRATION; SOIL-WATER BALANCE; LANDSCAPE PLANTS; IRRIGATION; INDEXES; CROP; MANAGEMENT; RIPARIAN; ORCHARD; BUDGET;
D O I
10.3390/rs8060492
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Despite being the driest inhabited continent, Australia has one of the highest per capita water consumptions in the world. In addition, instead of having fit-for-purpose water supplies (using different qualities of water for different applications), highly treated drinking water is used for nearly all of Australia's urban water supply needs, including landscape irrigation. The water requirement of urban landscapes, particularly urban parklands, is of growing concern. The estimation of evapotranspiration (ET) and subsequently plant water requirements in urban vegetation needs to consider the heterogeneity of plants, soils, water, and climate characteristics. This research contributes to a broader effort to establish sustainable irrigation practices within the Adelaide Parklands in Adelaide, South Australia. In this paper, two practical ET estimation approaches are compared to a detailed Soil Water Balance (SWB) analysis over a one year period. One approach is the Water Use Classification of Landscape Plants (WUCOLS) method, which is based on expert opinion on the water needs of different classes of landscape plants. The other is a remote sensing approach based on the Enhanced Vegetation Index (EVI) from Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on the Terra satellite. Both methods require knowledge of reference ET calculated from meteorological data. The SWB determined that plants consumed 1084 mmyr(-1) of water in ET with an additional 16% lost to drainage past the root zone, an amount sufficient to keep salts from accumulating in the root zone. ET by MODIS EVI was 1088 mmyr(-1), very close to the SWB estimate, while WUCOLS estimated the total water requirement at only 802 mmyr(-1), 26% lower than the SWB estimate and 37% lower than the amount actually added including the drainage fraction. Individual monthly ET by MODIS was not accurate, but these errors were cancelled out to give good agreement on an annual time step. We conclude that the MODIS EVI method can provide accurate estimates of urban water requirements in mixed landscapes large enough to be sampled by MODIS imagery with 250-m resolution such as parklands and golf courses.
引用
收藏
页数:15
相关论文
共 50 条
[1]  
Allen RG, 1998, FAO Irrigation and Drainage Paper 56
[2]   Evapotranspiration information reporting: I. Factors governing measurement accuracy [J].
Allen, Richard G. ;
Pereira, Luis S. ;
Howell, Terry A. ;
Jensen, Marvin E. .
AGRICULTURAL WATER MANAGEMENT, 2011, 98 (06) :899-920
[3]  
BOM, 2010, ANN CLIM SUMM
[4]  
Costello L.R., 1994, Water use classification of landscape species
[5]  
Costello L.R., 2000, GUIDE ESTIMATING IRR
[6]  
Driessen P. M., 1986, Modelling of agricultural production: weather, soils and crops, P76
[7]  
Evett SR, 2003, VADOSE ZONE J, V2, P642, DOI 10.2113/2.4.642
[8]   Neutron moisture meter calibration in six soils of Uzbekistan affected by carbonate accumulation [J].
Evett, Steven ;
Ibragimov, Nazirbay ;
Kamilov, Bakhtiyor ;
Esanbekov, Yusupbek ;
Sarimsakov, Makhsud ;
Shadmanov, Jamaliddin ;
Mirhashimov, Rahmonkul ;
Musaev, Ruzibay ;
Radjabov, Tilak ;
Muhammadiev, Bahram .
VADOSE ZONE JOURNAL, 2007, 6 (02) :406-412
[9]   The risks associated with wastewater reuse and xenobiotics in the agroecological environment [J].
Fatta-Kassinos, D. ;
Kalavrouziotis, I. K. ;
Koukoulakis, P. N. ;
Vasquez, M. I. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2011, 409 (19) :3555-3563
[10]   Evapotranspiration and water balance of an anthropogenic coastal desert wetland: Responses to fire, inflows and salinities [J].
Glenn, Edward P. ;
Mexicano, Lourdes ;
Garcia-Hernandez, Jaqueline ;
Nagler, Pamela L. ;
Gomez-Sapiens, Martha M. ;
Tang, Dawei ;
Lomeli, Marcelo A. ;
Ramirez-Hernandez, Jorge ;
Zamora-Arroyo, Francisco .
ECOLOGICAL ENGINEERING, 2013, 59 :176-184