A Millimeter-Wave Miniature Branch-Line Coupler in 22-nm CMOS Technology

被引:13
作者
Acri, G. [1 ]
Podevin, F. [1 ]
Pistono, E. [1 ]
Boccia, L. [2 ]
Corrao, N. [3 ]
Lim, T. [4 ]
Isa, E. N. [4 ]
Ferrari, P. [1 ]
机构
[1] Univ Grenoble Alpes, RFIC Lab, Grenoble INP, F-38031 Grenoble, France
[2] Univ Calabria, DIMES, I-87036 Arcavacata Di Rende, Italy
[3] Univ Grenoble Alpes, IMEP LaHC, Grenoble INP, F-38031 Grenoble, France
[4] Fraunhofer EMFT, Res Inst Microsyst & Solid State Technol, D-80686 Munich, Germany
来源
IEEE SOLID-STATE CIRCUITS LETTERS | 2019年 / 2卷 / 06期
关键词
Branch-line coupler; CMOS; millimeter-wave;
D O I
10.1109/LSSC.2019.2930197
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A 60-GHz innovative quadrature branch-line coupler is proposed in this letter. The device was implemented in a 22-nm CMOS process, from global foundries. The proposed design merges two miniaturization techniques. On the one hand, slow-wave microstrip (SW-MS) lines based on bed of nails are demonstrated in CMOS technology for the first time. On the other hand, the two quarter-wavelength MS line sections required for the branch-line coupler implementation are realized using the SW-MS transmission line configurations with different form factors. As a result, the achieved miniaturization versus electrical performance is very good as compared to the state-of-the-art. Design insights addressing the coupler dimensions and losses are discussed. The experimental assessment shows an adequate frequency response with amplitude and phase imbalance of 0.8 dB and 1.8 degrees at 60 GHz, respectively. The measured insertion loss is 2.35 dB at 60 GHz and the return loss is better than 15 dB at any port (from 54 to 66 GHz). The isolation is better than 15 dB (from 51 to 68 GHz). The overall size of the coupler is 0.3 mm x 0.22 mm, which is equivalent to 0.06.lambda(0) x 0.044.lambda(0), at 60 GHz.
引用
收藏
页码:45 / 48
页数:4
相关论文
共 11 条
[1]   Miniaturized branch-line coupler based on slow-wave microstrip lines [J].
Alhalabi, H. ;
Issas, H. ;
Pistono, E. ;
Kaddour, D. ;
Podevin, F. ;
Abouchahine, S. ;
Ferrari, P. .
INTERNATIONAL JOURNAL OF MICROWAVE AND WIRELESS TECHNOLOGIES, 2018, 10 (10) :1103-1106
[2]  
[Anonymous], 2016, ANSYS HFSS V 17 1
[3]   A High Slow-Wave Factor Microstrip Structure With Simple Design Formulas and Its Application to Microwave Circuit Design [J].
Chang, Wei-Shin ;
Chang, Chi-Yang .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2012, 60 (11) :3376-3383
[4]  
Chiang MJ, 2009, APMC: 2009 ASIA PACIFIC MICROWAVE CONFERENCE, VOLS 1-5, P2124, DOI 10.1109/APMC.2009.5385257
[5]  
Ding H, 2007, 2007 EUROPEAN MICROWAVE CONFERENCE, VOLS 1-4, P458
[6]   SiGe bipolar transceiver circuits operating at 60 GHz [J].
Floyd, BA ;
Reynolds, SK ;
Pfeiffer, UR ;
Zwick, T ;
Beukema, T ;
Gaucher, B .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2005, 40 (01) :156-167
[7]   Experimental Analysis of a 60 GHz Compact EC-CPW Branch-Line Coupler for mm-Wave CMOS Radios [J].
Haroun, Ibrahim ;
Wight, Jim ;
Plett, Calvin ;
Fathy, Aly ;
Chang, Da-Chiang .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2010, 20 (04) :211-213
[8]  
Hettak K, 2010, IEEE MTT S INT MICR, P1576, DOI 10.1109/MWSYM.2010.5517131
[9]   Miniature 60 GHz slow-wave CPW branch-line coupler using 90 nm digital CMOS process [J].
Kuo, C. -Y. ;
Chen, A. Y. -K. ;
Lee, C. -M. ;
Luo, C. -H. .
ELECTRONICS LETTERS, 2011, 47 (16) :924-925
[10]   Modeling and Characterization of Slow-Wave Microstrip Lines on Metallic-Nanowire-Filled-Membrane Substrate [J].
Serrano, Ariana L. C. ;
Franc, Anne-Laure ;
Assis, D. P. ;
Podevin, Florence ;
Rehder, Gustavo P. ;
Corrao, Nicolas ;
Ferrari, Philippe .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2014, 62 (12) :3249-3254