Neuronal programming by microbiota regulates intestinal physiology

被引:258
作者
Obata, Yuuki [1 ]
Castano, Alvaro [1 ]
Boeing, Stefan [1 ]
Bon-Frauches, Ana Carina [1 ]
Fung, Candice [2 ]
Fallesen, Todd [1 ]
De Aguero, Mercedes Gomez [3 ]
Yilmaz, Bahtiyar [3 ]
Lopes, Rita [1 ]
Huseynova, Almaz [1 ]
Horswell, Stuart [1 ]
Maradana, Muralidhara Rao [1 ]
Boesmans, Werend [4 ,5 ]
Vanden Berghe, Pieter [2 ]
Murray, Andrew J. [6 ]
Stockinger, Brigitta [1 ]
Macpherson, Andrew J. [3 ]
Pachnis, Vassilis [1 ]
机构
[1] Francis Crick Inst, London, England
[2] Univ Leuven, Lab Enter Neurosci LENS, Translat Res Gastrointestinal Disorders TARGID, Dept Clin & Expt Med, Leuven, Belgium
[3] Univ Bern, Maurice Muller Labs (DKF, Univ Klin Viszerale Chirurg & Med, Inselspital, Bern, Switzerland
[4] Hasselt Univ, Biomed Res Inst BIOMED, Hasselt, Belgium
[5] Maastricht Univ, Dept Pathol, GROW Sch Oncol & Dev Biol, Med Ctr, Maastricht, Netherlands
[6] UCL, Sainsbury Wellcome Ctr Neural Circuits & Behav, London, England
基金
英国生物技术与生命科学研究理事会; 英国惠康基金; 英国医学研究理事会;
关键词
POTASSIUM CHANNELS; GUT MICROBIOTA; MYENTERIC NEURONS; IMMUNE; RECEPTOR; METABOLISM; SYSTEM; MOTILITY; LIVER;
D O I
10.1038/s41586-020-1975-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Neural control of the function of visceral organs is essential for homeostasis and health. Intestinal peristalsis is critical for digestive physiology and host defence, and is often dysregulated in gastrointestinal disorders(1). Luminal factors, such as diet and microbiota, regulate neurogenic programs of gut motility(2-5), but the underlying molecular mechanisms remain unclear. Here we show that the transcription factor aryl hydrocarbon receptor (AHR) functions as a biosensor in intestinal neural circuits, linking their functional output to the microbial environment of the gut lumen. Using nuclear RNA sequencing of mouse enteric neurons that represent distinct intestinal segments and microbiota states, we demonstrate that the intrinsic neural networks of the colon exhibit unique transcriptional profiles that are controlled by the combined effects of host genetic programs and microbial colonization. Microbiota-induced expression of AHR in neurons of the distal gastrointestinal tract enables these neurons to respond to the luminal environment and to induce expression of neuron-specific effector mechanisms. Neuron-specific deletion of Ahr, or constitutive overexpression of its negative feedback regulator CYP1A1, results in reduced peristaltic activity of the colon, similar to that observed in microbiota-depleted mice. Finally, expression of Ahr in the enteric neurons of mice treated with antibiotics partially restores intestinal motility. Together, our experiments identify AHR signalling in enteric neurons as a regulatory node that integrates the luminal environment with the physiological output of intestinal neural circuits to maintain gut homeostasis and health. In a mouse model, aryl hydrocarbon receptor signalling in enteric neurons is revealed as a mechanism that helps to maintain gut homeostasis by integrating the luminal environment with the physiology of intestinal neural circuits.
引用
收藏
页码:284 / +
页数:18
相关论文
共 42 条
[1]   Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease [J].
Agus, Allison ;
Planchais, Julien ;
Sokol, Harry .
CELL HOST & MICROBE, 2018, 23 (06) :716-724
[2]   AROMATIC HYDROCARBON RESPONSIVENESS-RECEPTOR AGONISTS GENERATED FROM INDOLE-3-CARBINOL INVITRO AND INVIVO - COMPARISONS WITH 2,3,7,8-TETRACHLORODIBENZO-PARA-DIOXIN [J].
BJELDANES, LF ;
KIM, JY ;
GROSE, KR ;
BARTHOLOMEW, JC ;
BRADFIELD, CA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (21) :9543-9547
[3]   Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase [J].
Danielian, PS ;
Muccino, D ;
Rowitch, DH ;
Michael, SK ;
McMahon, AP .
CURRENT BIOLOGY, 1998, 8 (24) :1323-1326
[4]   The maternal microbiota drives early postnatal innate immune development [J].
de Agueero, Mercedes Gomez ;
Ganal-Vonarburg, Stephanie C. ;
Fuhrer, Tobias ;
Rupp, Sandra ;
Uchimura, Yasuhiro ;
Li, Hai ;
Steinert, Anna ;
Heikenwalder, Mathias ;
Hapfelmeier, Siegfried ;
Sauer, Uwe ;
McCoy, Kathy D. ;
Macpherson, Andrew J. .
SCIENCE, 2016, 351 (6279) :1296-1301
[5]   Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice [J].
De Palma, Giada ;
Lynch, Michael D. J. ;
Lu, Jun ;
Dang, Vi T. ;
Deng, Yikang ;
Jury, Jennifer ;
Umeh, Genevieve ;
Miranda, Pedro M. ;
Pastor, Marc Pigrau ;
Sidani, Sacha ;
Pinto-Sanchez, Maria Ines ;
Philip, Vivek ;
McLean, Peter G. ;
Hagelsieb, Moreno-Gabriel ;
Surette, Michael G. ;
Bergonzelli, Gabriela E. ;
Verdu, Elena F. ;
Britz-McKibbin, Philip ;
Neufeld, Josh D. ;
Collins, Stephen M. ;
Bercik, Premysl .
SCIENCE TRANSLATIONAL MEDICINE, 2017, 9 (379)
[6]   Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks [J].
De Vedder, Filipe ;
Grasset, Estelle ;
Holm, Louise Manneras ;
Karsenty, Gerard ;
Macpherson, Andrew J. ;
Olofsson, Louise E. ;
Backhed, Fredrik .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (25) :6458-6463
[7]   Regulators of Gut Motility Revealed by a Gnotobiotic Model of Diet-Microbiome Interactions Related to Travel [J].
Dey, Neelendu ;
Wagner, Vitas E. ;
Blanton, Laura V. ;
Cheng, Jiye ;
Fontana, Luigi ;
Haque, Rashidul ;
Ahmed, Tahmeed ;
Gordon, Jeffrey I. .
CELL, 2015, 163 (01) :95-107
[8]   Gut biogeography of the bacterial microbiota [J].
Donaldson, Gregory P. ;
Lee, S. Melanie ;
Mazmanian, Sarkis K. .
NATURE REVIEWS MICROBIOLOGY, 2016, 14 (01) :20-32
[9]   The enteric nervous system and neurogastroenterology [J].
Furness, John B. .
NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2012, 9 (05) :286-294
[10]   Neuro-immune Interactions Drive Tissue Programming in Intestinal Macrophages [J].
Gabanyi, Ilana ;
Muller, Paul A. ;
Feighery, Linda ;
Oliveira, Thiago Y. ;
Costa-Pinto, Frederico A. ;
Mucida, Daniel .
CELL, 2016, 164 (03) :378-391