Orthogonal groups containing a given maximal torus

被引:13
作者
Brusamarello, R
Chuard-Koulmann, P
Morales, J [1 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70808 USA
[2] Univ Estadual Maringa, Dept Matemat, BR-87020900 Maringa, Parana, Brazil
[3] Univ Neuchatel, Inst Math, CH-2007 Neuchatel, Switzerland
关键词
D O I
10.1016/S0021-8693(03)00287-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a field of characteristic different from 2 and let T be a fixed k-torus of dimension n. In this paper we study faithful k-representations rho: T --> SO(A, sigma), where (A, sigma) is a central simple algebra of degree 2n with orthogonal involution sigma. Note that in this case rho(T) is a maximal torus in SO(A, sigma). We are interested in describing the pairs (A, sigma) for which there is such a representation. We compute invariants for these algebras (discriminant and Clifford algebra), which are sufficient to determine their isomorphism class when I-3(k) = 0 by a theorem of Lewis and Tignol. The first part of the paper is devoted to the case where A is split over k and an application to a theorem of Feit on orthogonal groups over Q is given. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:87 / 101
页数:15
相关论文
共 12 条
[1]   On the second Stiefel-Whitney class of scaled trace forms of central simple algebras [J].
Brusamarello, R ;
Morales, J .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 61 :335-348
[2]   Extending involutions on Frobenius algebras [J].
Chuard-Koulmann, P ;
Morales, J .
MANUSCRIPTA MATHEMATICA, 2002, 108 (04) :439-451
[3]  
FEIT W, 1975, LINEAR MULTILINEAR A, V3, P25
[4]  
Humphreys J. E., 1975, GRAD TEXTS MATH, V21
[5]  
KNUS MA, 1998, BOOK INVOLUTIONS
[6]   Classification theorems for central simple algebras with involution [J].
Lewis, DW ;
Tignol, JP .
MANUSCRIPTA MATHEMATICA, 1999, 100 (03) :259-276
[7]  
LEWIS DW, 1997, EXPO MATH, V15, P265
[8]   QUADRATIC-FORMS INVARIANT UNDER GROUP-ACTIONS [J].
MORALES, J ;
PIVETEAU, JM .
ILLINOIS JOURNAL OF MATHEMATICS, 1992, 36 (01) :145-154
[9]  
Scharlau W., 1985, QUADRATIC HERMITIAN
[10]   THE WITT INVARIANT OF TR(X2) FORM [J].
SERRE, JP .
COMMENTARII MATHEMATICI HELVETICI, 1984, 59 (04) :651-676