In between the inequalities of Sobolev and Hardy

被引:9
作者
Lehrback, Juha [1 ]
Vahakangas, Antti V. [1 ,2 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35, FI-40014 Jyvaskyla, Finland
[2] Univ Helsinki, Dept Math & Stat, POB 68, FI-00014 Helsinki, Finland
基金
芬兰科学院;
关键词
Sobolev inequality; Hardy inequality; Assouad dimension; DIMENSIONS; ASSOUAD; DOMAINS;
D O I
10.1016/j.jfa.2016.04.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish both sufficient and necessary conditions for the validity of the so-called Hardy-Sobolev inequalities on open sets of the Euclidean space. These inequalities form a natural interpolating scale between the (weighted) Sobolev inequalities and the (weighted) Hardy inequalities. The Assouad dimension of the complement of the open set turns out to play an important role in both sufficient and necessary conditions. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:330 / 364
页数:35
相关论文
共 35 条
[1]   QUASIADDITIVITY OF RIESZ CAPACITY [J].
AIKAWA, H .
MATHEMATICA SCANDINAVICA, 1991, 69 (01) :15-30
[2]  
[Anonymous], 2000, LECT NOTES MATH
[3]  
ASSOUAD P, 1983, B SOC MATH FR, V111, P429
[4]   A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics [J].
Badiale, M ;
Tarantello, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 163 (04) :259-293
[5]  
CAFFARELLI L, 1984, COMPOS MATH, V53, P259
[6]  
Edmunds DE, 2014, P AM MATH SOC, V142, P897
[7]  
Edmunds DE, 2011, HOUSTON J MATH, V37, P929
[8]  
Evans L. C., 2010, Partial Differential Equations, V19, DOI 10.1090/gsm/019
[9]  
Federer Herbert, 1969, GEOMETRIC MEASURE TH
[10]   Critical Hardy-Sobolev inequalities [J].
Filippas, S. ;
Maz'ya, V. ;
Terfikas, A. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 87 (01) :37-56