Multiplicative automatic sequences

被引:2
作者
Konieczny, Jakub [1 ]
Lemanczyk, Mariusz [2 ]
Mullner, Clemens [3 ]
机构
[1] Claude Bernard Univ Lyon 1, Camille Jordan Inst, 11th November 1918 Blvd 43, F-69622 Villeurbanne, France
[2] Nicolaus Copernicus Univ, Fac Math & Comp Sci, Chopin St 12-18, PL-87100 Torun, Poland
[3] TU Wien, Inst Discrete Math & Geometry, Wiedner Main St 8-10, A-1040 Vienna, Austria
基金
欧洲研究理事会;
关键词
Automatic sequences; Multiplicative sequences; TRANSCENDENCE; SERIES;
D O I
10.1007/s00209-021-02834-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a complete classification of complex-valued sequences which are both multiplicative and automatic.
引用
收藏
页码:1297 / 1318
页数:22
相关论文
共 30 条
[1]  
Allouche J., 2003, AUTOMATIC SEQUENCES, DOI DOI 10.1017/CBO9780511546563
[2]   Mock characters and the Kronecker symbol [J].
Allouche, Jean-Paul ;
Goldmakher, Leo .
JOURNAL OF NUMBER THEORY, 2018, 192 :356-372
[3]   THE MINIMAL GROWTH OF A k-REGULAR SEQUENCE [J].
Bell, Jason P. ;
Coons, Michael ;
Hare, Kevin G. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 90 (02) :195-203
[4]  
Bell JP, 2012, T AM MATH SOC, V364, P933
[5]   Multiplicative functions and differential equations [J].
Bezivin, JP .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1995, 123 (03) :329-349
[6]   COMPLETELY MULTIPLICATIVE FUNCTIONS TAKING VALUES IN {-1,1} [J].
Borwein, Peter ;
Choi, Stephen K. K. ;
Coons, Michael .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (12) :6279-6291
[7]  
Borwein P, 2009, P AM MATH SOC, V137, P1303
[8]  
Christol G., 1979, Theoretical Computer Science, V9, P141, DOI 10.1016/0304-3975(79)90011-2
[9]  
CHRISTOL G, 1980, B SOC MATH FR, V108, P401
[10]  
COBHAM A, 1972, MATH SYST THEORY, V6, P164, DOI [DOI 10.1007/BF01706087, 10.1007/BF01706087]