Deep learning enables confocal laser-scanning microscopy with enhanced resolution

被引:6
作者
Wang, Weibo [1 ,2 ]
Wu, Biwei [1 ,2 ]
Zhang, Baoyuan [1 ,2 ]
Ma, Jie [1 ,2 ]
Tan, Jiubin [1 ,2 ]
机构
[1] Harbin Inst Technol, Inst Ultraprecis Optoelect Instrument Engn, Harbin 150001, Peoples R China
[2] Minist Ind & Informat Technol, Harbin Inst Technol, Key Lab Ultraprecis Intelligent Instrumentat, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
IMAGE; SUPERRESOLUTION;
D O I
10.1364/OL.440561
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Theoretical resolution enhancement of confocal laserscanning microscopy (CLSM) is sacrificed for the best compromise between optical sectioning and the signal-to-noise ratio (SNR). The pixel reassignment reconstruction algorithm can improve the effective spatial resolution of CLSM to its theoretical limit. However, current implementations are not versatile and are time-consuming or technically complex. Here we present a parameter-free post-processing strategy for laser-scanning microscopy based on deep learning, which enables a spatial resolution enhancement by a factor of similar to 1.3, compared to conventional CLSM. To speed up the training process for experimental data, transfer learning, combined with a hybrid dataset consisting of simulated synthetic and experimental images, is employed. The overall resolution and SNR improvement, validated by quantitative evaluation metrics, allowed us to correctly infer the fine structures of real experimental images. (C) 2021 Optical Society of America.
引用
收藏
页码:4932 / 4935
页数:4
相关论文
共 31 条
  • [1] [Anonymous], 2006, HDB BIOL CONFOCAL MI
  • [2] Deep learning
    LeCun, Yann
    Bengio, Yoshua
    Hinton, Geoffrey
    [J]. NATURE, 2015, 521 (7553) : 436 - 444
  • [3] Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction
    Belthangady, Chinmay
    Royer, Loic A.
    [J]. NATURE METHODS, 2019, 16 (12) : 1215 - 1225
  • [4] Burke L.A., 2007, HUM RESOUR DEV REV, V6, P263, DOI [10.1177/1534484307303035, DOI 10.1177/1534484307303035]
  • [5] High-Content Phenotypic Profiling of Drug Response Signatures across Distinct Cancer Cells
    Caie, Peter D.
    Walls, Rebecca E.
    Ingleston-Orme, Alexandra
    Daya, Sandeep
    Houslay, Tom
    Eagle, Rob
    Roberts, Mark E.
    Carragher, Neil O.
    [J]. MOLECULAR CANCER THERAPEUTICS, 2010, 9 (06) : 1913 - 1926
  • [6] A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM
    Castello, Marco
    Tortarolo, Giorgio
    Buttafava, Mauro
    Deguchi, Takahiro
    Villa, Federica
    Koho, Sami
    Pesce, Luca
    Oneto, Michele
    Pelicci, Simone
    Lanzano, Luca
    Bianchini, Paolo
    Sheppard, Colin J. R.
    Diaspro, Alberto
    Tosi, Alberto
    Vicidomini, Giuseppe
    [J]. NATURE METHODS, 2019, 16 (02) : 175 - +
  • [7] Image scanning microscopy with a quadrant detector
    Castello, Marco
    Sheppard, Colin J. R.
    Diaspro, Alberto
    Vicidomini, Giuseppe
    [J]. OPTICS LETTERS, 2015, 40 (22) : 5355 - 5358
  • [8] In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images
    Christiansen, Eric M.
    Yang, Samuel J.
    Ando, D. Michael
    Javaherian, Ashkan
    Skibinski, Gaia
    Lipnick, Scott
    Mount, Elliot
    O'Neil, Alison
    Shah, Kevan
    Lee, Alicia K.
    Goyal, Piyush
    Fedus, William
    Poplin, Ryan
    Esteva, Andre
    Berndl, Marc
    Rubin, Lee L.
    Nelson, Philip
    Finkbeiner, Steven
    [J]. CELL, 2018, 173 (03) : 792 - +
  • [9] Culley S, 2018, NAT METHODS, V15, P263, DOI [10.1038/NMETH.4605, 10.1038/nmeth.4605]
  • [10] Re-scan confocal microscopy: scanning twice for better resolution
    De Luca, Giulia M. R.
    Breedijk, Ronald M. P.
    Brandt, Rick A. J.
    Zeelenberg, Christiaan H. C.
    de Jong, Babette E.
    Timmermans, Wendy
    Azar, Leila Nahidi
    Hoebe, Ron A.
    Stallinga, Sjoerd
    Manders, Erik M. M.
    [J]. BIOMEDICAL OPTICS EXPRESS, 2013, 4 (11): : 2644 - 2656