On states of total weighted occupation times of a class of infinitely divisible superprocesses on a bounded domain

被引:4
作者
Ren, Yan-Xia [2 ]
Wang, Hao [1 ]
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
[2] Peking Univ, LMAM Sch Math Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
absolute continuity; singularity; total weighted occupation time; super-stable process; super-geometric stable process;
D O I
10.1007/s11118-007-9073-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, general conditions of state classification for the total weighted occupation times of a class of infinitely divisible superprocesses on a bounded domain D in R-d are given. As an application, some sufficient and necessary conditions are found for the total weighted occupation times of some special superprocesses on D to be absolutely continuous or singular with respect to the Lebesgue measure on D.
引用
收藏
页码:105 / 137
页数:33
相关论文
共 32 条
[1]  
Aissaoui N., 1994, ANN SCI MATH QUEBEC, V18, P1
[2]  
AISSAOUI N, 1995, ANN SCI MATH QUEBEC, V19, P107
[3]  
[Anonymous], CAMBRIDGE STUDIES AD
[4]  
BERTOIN J, 2005, SOME CONNECTIONS CRI
[5]  
Bliedtner J, 1986, POTENTIAL THEORY ANA
[6]  
BLUMENTHAL RM, 1968, MARKOV PROCESSES POT
[7]  
Bogdan K., 2000, Probab. Math. Stat, V20, P293
[8]   Two-sided eigenvalue estimates for subordinate processes in domains [J].
Chen, ZQ ;
Song, RM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 226 (01) :90-113
[9]   Estimates on Green functions and Poisson kernels for symmetric stable processes [J].
Chen, ZQ ;
Song, RM .
MATHEMATISCHE ANNALEN, 1998, 312 (03) :465-501
[10]  
Dawson D.A., 1993, LECT NOTES MATH, V1541, P1, DOI DOI 10.1007/BFB0084190