Metal-Organic Framework for Transparent Electronics

被引:72
作者
Wu, Jie [1 ]
Chen, Jinhang [2 ,3 ]
Wang, Chao [1 ]
Zhou, Yi [1 ]
Ba, Kun [2 ,3 ]
Xu, Hu [4 ]
Bao, Wenzhong [4 ]
Xu, Xiaohui [1 ]
Carlsson, Anna [5 ]
Lazar, Sorin [5 ]
Meingast, Arno [5 ]
Sun, Zhengzong [2 ,3 ]
Deng, Hexiang [1 ]
机构
[1] Wuhan Univ, Key Lab Biomed Polymers, Minist Educ, Coll Chem & Mol Sci, Wuhan 430072, Peoples R China
[2] Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China
[3] Fudan Univ, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
[4] Fudan Univ, Sch Microelect, Shanghai 200433, Peoples R China
[5] Thermo Fisher Sci, Mat & Struct Anal, NL-5651 GG Eindhoven, Netherlands
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
metal-organic frameworks; transparent electronics; GRAPHENE FILMS; THIN-FILMS; CRYSTALLINE; FABRICATION; MICROSCOPY; LIQUID; SENSOR; GLASS;
D O I
10.1002/advs.201903003
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electronics allowing for visible light to pass through are attractive, where a key challenge is to make the core functional units transparent. Here, it is shown that transparent electronics can be constructed by epitaxial growth of metal-organic frameworks (MOFs) on single-layer graphene (SLG) to give a desirable transparency of 95.7% to 550 nm visible light and an electrical conductivity of 4.0 x 10(4) S m(-1). Through lattice and symmetry match, collective alignment of MOF pores and dense packing of MOFs vertically on SLG are achieved, as directly visualized by electron microscopy. These MOF-on-SLG constructs are capable of room-temperature recognition of gas molecules at the ppb level with a linear range from 10 to 10(8) ppb, providing real-time gas monitoring function in transparent electronics. The corresponding devices can be fabricated on flexible substrates with large size, 3 x 5 cm, and afford continuous folding for more than 200 times without losing conductivity or transparency.
引用
收藏
页数:10
相关论文
共 64 条
  • [1] Transparent-to-Dark Electrochromic Behavior in Naphthalene-Diimide-Based Mesoporous MOF-74 Analogs
    AlKaabi, Khalid
    Wade, Casey R.
    Dinca, Mircea
    [J]. CHEM, 2016, 1 (02): : 264 - 272
  • [2] A Roadmap to Implementing Metal-Organic Frameworks in Electronic Devices: Challenges and Critical Directions
    Allendorf, Mark D.
    Schwartzberg, Adam
    Stavila, Vitalie
    Talin, A. Alec
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2011, 17 (41) : 11372 - 11388
  • [3] [Anonymous], ADV MAT
  • [4] [Anonymous], ACS APPL MAT INTERFA
  • [5] Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
  • [6] Transparent Metal-Organic Framework/Polymer Mixed Matrix Membranes as Water Vapor Barriers
    Bae, Youn Jue
    Cho, Eun Seon
    Qu, Fen
    Sun, Daniel T.
    Williams, Teresa E.
    Urban, Jeffrey J.
    Queen, Wendy L.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (16) : 10098 - 10103
  • [7] Nanophase glass-ceramics
    Beall, GH
    Pinckney, LR
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1999, 82 (01) : 5 - 16
  • [8] Liquid, glass and amorphous solid states of coordination polymers and metal-organic frameworks
    Bennett, Thomas D.
    Horike, Satoshi
    [J]. NATURE REVIEWS MATERIALS, 2018, 3 (11): : 431 - 440
  • [9] Biological metal-organic frameworks: Structures, host-guest chemistry and bio-applications
    Cai, Hong
    Huang, Yong-Liang
    Li, Dan
    [J]. COORDINATION CHEMISTRY REVIEWS, 2019, 378 : 207 - 221
  • [10] Chemiresistive Sensor Arrays from Conductive 2D Metal-Organic Frameworks
    Campbell, Michael G.
    Liu, Sophie F.
    Swager, Timothy M.
    Dinca, Mircea
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (43) : 13780 - 13783