On the optimal scaling of index three DAEs in multibody dynamics

被引:47
作者
Bottasso, Carlo L. [1 ]
Dopico, Daniel [2 ]
Trainelli, Lorenzo [1 ]
机构
[1] Politecn Milan, Dipartimento Ingn Aerospaziale, I-20156 Milan, Italy
[2] Univ A Coruna, Escuela Politecn Superior, Ferrol 15403, Spain
关键词
differential algebraic equations; constraints; Lagrange multipliers; multibody dynamics; high index;
D O I
10.1007/s11044-007-9051-9
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We propose a preconditioning strategy for the governing equations of multibody systems in index-3 differential-algebraic form. The method eliminates the amplification of errors and the ill-conditioning which affect numerical solutions of high index differential algebraic equations for small time steps. We develop a new theoretical analysis of the perturbation problem and we apply it to the derivation of preconditioners for the Newmark family of integration schemes. The theoretical results are confirmed by numerical experiments.
引用
收藏
页码:3 / 20
页数:18
相关论文
共 8 条
[1]   The Embedded Projection Method: A general index reduction procedure for constrained system dynamics [J].
Borri, Marco ;
Trainelli, Lorenzo ;
Croce, Alessandro .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (50-51) :6974-6992
[2]   Time-step-size-independent conditioning and sensitivity to perturbations in the numerical solution of index three differential algebraic equations [J].
Bottasso, Carlo L. ;
Bauchau, Olivier A. ;
Cardona, Alberto .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (01) :397-414
[3]  
BOTTASSO CL, 2005, ASME 2005 INT DES EN
[4]   AUTOMATIC INTEGRATION OF EULER-LAGRANGE EQUATIONS WITH CONSTRAINTS [J].
GEAR, CW ;
LEIMKUHLER, B ;
GUPTA, GK .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1985, 12-3 (MAY) :77-90
[5]  
Geradin M., 2001, FLEXIBLE MULTIBODY D
[6]  
Newmark N.M., 1959, J Eng Mech Div, V85, P67, DOI [10.1061/JMCEA3.0000098, DOI 10.1061/JMCEA3.0000098, 10.1061/TACEAT.0008448]
[7]  
PETZOLD L, 1986, SIAM J SCI STAT COMP, V7, P721
[8]  
SCHIEHLEN W, 1990, MULTIBODY SYSTEMS HD