Coupling of short DNAs with reduced graphene oxide for electronic and sensing applications

被引:3
作者
Komarov, I. A. [1 ]
Antipova, O. M. [2 ]
Kalinnikov, A. N. [1 ]
Orlov, M. A. [1 ]
Bogachev, V. V. [1 ]
Buyanov, A. D. [1 ]
Onoprienko, E. A. [1 ]
机构
[1] Bauman Moscow State Tech Univ, Interbranch Engn Ctr Composites Russia, Moscow, Russia
[2] Lomonosov Moscow State Univ, Chem Dept, Moscow, Russia
关键词
Aptamer; biosensor; covalent coupling; reduced graphene oxide; REDUCTION; BIOSENSOR; FILMS; PHOTOREDUCTION; STABILITY; ACID;
D O I
10.1080/1536383X.2020.1713761
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this article, we described an approach for coupling of short DNAs with reduced graphene oxide and thus formation of transducer layer for biological sensors. We investigated the dependence of coupling ratio on the graphene oxide reduction level. We found optimal reduction parameters and showed successful conjugation of aptamers with reduced graphene oxide. We have revealed a trend to increase aptamer conjugation efficiency with a decrease of graphene oxide reduction rate. Finally, we made biosensor structures with pi-shaped reduction pattern and showed excellent sensitivity of the sensor during thrombin exposure. These results are important for the development of flexible low-cost biosensors of a new generation.
引用
收藏
页码:526 / 532
页数:7
相关论文
共 45 条
[1]   Release kinetics of 5-aminosalicylic acid from halloysite [J].
Aguzzi, C. ;
Viseras, C. ;
Cerezo, P. ;
Salcedo, I. ;
Sanchez-Espejo, R. ;
Valenzuela, C. .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2013, 105 :75-80
[2]   Thin partially reduced oxide-graphene films: Structural, optical, and electrical properties [J].
Alexandrov G.N. ;
Smagulova S.A. ;
Kapitonov A.N. ;
Vasil'eva F.D. ;
Kurkina I.I. ;
Vinokurov P.V. ;
Timofeev V.B. ;
Antonova I.V. .
Nanotechnologies in Russia, 2014, 9 (7-8) :363-368
[3]   Application of the Enzymatic Electrochemical Biosensors for Monitoring Non-Competitive Inhibition of Enzyme Activity by Heavy Metals [J].
Ashrafi, Amir M. ;
Sys, Milan ;
Sedlackova, Eliska ;
Farag, Amir Shaaban ;
Adam, Vojtech ;
Pribyl, Jan ;
Richtera, Lukas .
SENSORS, 2019, 19 (13)
[4]  
Bagri A, 2010, NAT CHEM, V2, P581, DOI [10.1038/nchem.686, 10.1038/NCHEM.686]
[5]   SELECTION OF SINGLE-STRANDED-DNA MOLECULES THAT BIND AND INHIBIT HUMAN THROMBIN [J].
BOCK, LC ;
GRIFFIN, LC ;
LATHAM, JA ;
VERMAAS, EH ;
TOOLE, JJ .
NATURE, 1992, 355 (6360) :564-566
[6]  
Borodulin A.S., 2018, INT J MECH ENG TECHN, P1117
[7]   Graphene-based biosensors: methods, analysis and future perspectives [J].
Celik, Numan ;
Balachandran, Wamadeva ;
Manivannan, Nadarajah .
IET CIRCUITS DEVICES & SYSTEMS, 2015, 9 (06) :434-445
[8]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[9]   Optical Biosensors for Therapeutic Drug Monitoring [J].
Garzon, Vivian ;
Pinacho, Daniel G. ;
Bustos, Rosa-Helena ;
Garzon, Gustavo ;
Bustamante, Sandra .
BIOSENSORS-BASEL, 2019, 9 (04)
[10]   Revealing the ultrafast process behind the photoreduction of graphene oxide [J].
Gengler, Regis Y. N. ;
Badali, Daniel S. ;
Zhang, Dongfang ;
Dimos, Konstantinos ;
Spyrou, Konstantinos ;
Gournis, Dimitrios ;
Miller, R. J. Dwayne .
NATURE COMMUNICATIONS, 2013, 4