Experimental design for parameter estimation in steady-state linear models of metabolic networks

被引:2
|
作者
Froysa, Havard G. [1 ]
Skaug, Hans J. [1 ]
Alendal, Guttorm [1 ]
机构
[1] Univ Bergen, Dept Math, Bergen, Norway
关键词
Systems biology; Metabolic networks; Parameter identifiability; Experimental design; Fisher information; D-optimality; IDENTIFIABILITY ANALYSIS; UNCERTAINTY;
D O I
10.1016/j.mbs.2019.108291
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Metabolic networks are typically large, containing many metabolites and reactions. Dynamical models that aim to simulate such networks will consist of a large number of ordinary differential equations, with many kinetic parameters that must be estimated from experimental data. We assume these data to be metabolomics measurements made under steady-state conditions for different input fluxes. Assuming linear kinetics, analytical criteria for parameter identifiability are provided. For normally distributed error terms, we also calculate the Fisher information matrix analytically to be used in the D-optimality criterion. A test network illustrates the developed tool chain for finding an optimal experimental design. The first stage is to verify global or pointwise parameter identifiability, the second stage to find optimal input fluxes, and finally remove redundant measurements.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Nonlinear parameter estimation of steady-state induction machine models
    Marcus, A
    Lima, N
    Jacobina, CB
    deSouza, EB
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 1997, 44 (03) : 390 - 397
  • [2] Synchronous machine steady-state parameter estimation using neural networks
    Calvo, M
    Malik, OP
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2004, 19 (02) : 237 - 244
  • [3] A Balancing Act: Parameter Estimation for Biological Models with Steady-State Measurements
    Mizera, Andrzej
    Pang, Jun
    Sauter, Thomas
    Trairatphisan, Panuwat
    COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY, 2013, 8130 : 253 - +
  • [4] Data-Driven Parameter Estimation of Steady-State Load Models
    Tushar
    Pandey, Shikhar
    Srivastava, Anurag K.
    Markham, Penn
    Bhatt, Navin
    Patel, Mahendra
    2016 IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, DRIVES AND ENERGY SYSTEMS (PEDES), 2016,
  • [5] Steady-state parameter estimation of an experimental vapour compression refrigeration plant
    Rodriguez, David
    Alfaya, Jose A.
    Bejarano, Guillermo
    Ortega, Manuel G.
    Castano, F.
    2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, : 43 - 48
  • [6] Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models
    Rosenblatt, Marcus
    Timmer, Jens
    Kaschek, Daniel
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2016, 4
  • [7] Parameter Identification in Metabolic Reaction Networks by Means of Multiple Steady-State Measurements
    Palombo, Giovanni
    Borri, Alessandro
    Papa, Federico
    Papi, Marco
    Palumbo, Pasquale
    SYMMETRY-BASEL, 2023, 15 (02):
  • [8] Bayesian Parameter Estimation for Stochastic Reaction Networks from Steady-State Observations
    Gupta, Ankit
    Khammash, Mustafa
    Sanguinetti, Guido
    COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY (CMSB 2019), 2019, 11773 : 342 - 346
  • [9] PARAMETER ESTIMATION FOR POWER-SYSTEMS IN STEADY-STATE
    DEBS, AS
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) : 882 - 886
  • [10] THEORY OF STEADY-STATE CONTROL IN COMPLEX METABOLIC NETWORKS
    BOHNENSACK, R
    BIOMEDICA BIOCHIMICA ACTA, 1985, 44 (11-12) : 1567 - 1578