Commutative presemifields and semifields

被引:72
作者
Coulter, Robert S. [1 ]
Henderson, Marie [1 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词
commutative semifield; Dembowski-Ostrom polynomial; planar function;
D O I
10.1016/j.aim.2007.07.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Strong conditions are derived for when two commutative presemifields are isotopic. It is then shown that any commutative presemifield of odd order can be described by a planar Dembowski-Ostrom polynomial and conversely, any planar Dembowski-Ostrom polynomial describes a commutative presemifield of odd order. These results allow a classification of all planar functions which describe presemifields isotopic to a finite field and of all planar functions which describe presemifields isotopic to Albert's commutative twisted fields. A classification of all planar Dembowski-Ostrom polynomials over any finite field of order p(3), p an odd prime, is therefore obtained. The general theory developed in the article is then used to show the class of planar polynomials X-10 + aX(6) - a(2)X(2) with a not equal 0 describes precisely two new commutative presemifields of order 3(e) for each odd e >= 5. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:282 / 304
页数:23
相关论文
共 23 条
[1]  
Albert A. A., 1961, PACIFIC J MATH, V11, P1
[2]  
Albert A.A., 1960, S APPL MATH, V10, P53
[3]   ON NONASSOCIATIVE DIVISION ALGEBRAS [J].
ALBERT, AA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 72 (MAR) :296-309
[4]  
[Anonymous], T AM MATH SOC
[5]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[6]   COMMUTATIVE SEMIFIELDS, 2 DIMENSIONAL OVER THEIR MIDDLE NUCLEI [J].
COHEN, SD ;
GANLEY, MJ .
JOURNAL OF ALGEBRA, 1982, 75 (02) :373-385
[7]   The classification of planar monomials over fields of prime square order [J].
Coulter, Robert S. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (11) :3373-3378
[8]  
COULTER RS, 1997, CODES CRYPTOGR, V10, P167
[9]   PLANES OF ORDER N WITH COLLINEATION GROUPS OF ORDER N2 [J].
DEMBOWSKI, P ;
OSTROM, TG .
MATHEMATISCHE ZEITSCHRIFT, 1968, 103 (03) :239-&
[10]  
Dickson LE, 1906, T AM MATH SOC, V7, P514, DOI 10.2307/1986243