A Torelli type theorem for the moduli space of parabolic vector bundles over curves

被引:12
|
作者
Balaji, V
Biswas, I
Rollin, SD
机构
[1] SPIC Math Inst, Sch Math, Madras 600017, Tamil Nadu, India
[2] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
[3] Max Planck Inst Math, D-53224 Bonn, Germany
关键词
D O I
10.1017/S0305004100004916
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S (respectively, S') be a finite subset of a compact connected Riemann surface X (respectively, X') of genus at least two. Let M (respectively M') denote a moduli space of parabolic stable bundles of rank 2 over X (respectively X') with fixed determinant of degree 1, having a nontrivial quasi-parabolic structure over each point of S (respectively, S') and of parabolic degree less than 2. It, is proved that, K is isomorphic to M' if and only if there is an isomorphism of X with X' taking S to S'.
引用
收藏
页码:269 / 280
页数:12
相关论文
共 50 条
  • [21] Torelli theorems for moduli of logarithmic connections and parabolic bundles
    Sebastian, Ronnie
    MANUSCRIPTA MATHEMATICA, 2011, 136 (1-2) : 249 - 271
  • [22] CONNECTION ON PARABOLIC VECTOR BUNDLES OVER CURVES
    Biswas, Indranil
    Logares, Marina
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2011, 22 (04) : 593 - 602
  • [23] Integrable Systems and Torelli Theorems for the Moduli Spaces of Parabolic Bundles and Parabolic Higgs Bundles
    Biswas, Indranil
    Gomez, Tomas L.
    Logares, Marina
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2016, 68 (03): : 504 - 520
  • [24] On the rational homotopy type of a moduli space of vector bundles over a curve
    Biswas, Indranil
    Munoz, Vicente
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2008, 16 (01) : 183 - 215
  • [25] The line bundles on the moduli of parabolic G-bundles over curves and their sections
    Laszlo, Y
    Sorger, C
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1997, 30 (04): : 499 - 525
  • [26] The Hilbert compactification of the universal moduli space of semistable vector bundles over smooth curves
    Schmitt, A
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2004, 66 (02) : 169 - 209
  • [27] Geometric quantization for the moduli space of vector bundles with parabolic structure
    Daskalopoulos, GD
    Wentworth, RA
    GEOMETRY, TOPOLOGY AND PHYSICS, 1997, : 119 - 155
  • [28] A Torelli type theorem for the moduli space of rank two connections on a curve
    Biswas, I
    Nagel, J
    COMPTES RENDUS MATHEMATIQUE, 2005, 341 (10) : 617 - 622
  • [29] Torelli Theorem for the Deligne–Hitchin Moduli Space
    Indranil Biswas
    Tomás L. Gómez
    Norbert Hoffmann
    Marina Logares
    Communications in Mathematical Physics, 2009, 290 : 357 - 369
  • [30] ON VECTOR BUNDLES OVER MODULI SPACES TRIVIAL ON HECKE CURVES
    Biswas, Indranil
    Gomez, Tomas L.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (09) : 3613 - 3626