Self-adjointness and skew-adjointness criteria involving powers of linear relations

被引:5
作者
Sandovici, Adrian [1 ]
机构
[1] Gheorghe Asachi Tech Univ Iasi, Dept Math & Informat, B Dul Carol 1,Nr 11, Iasi 700506, Romania
关键词
Hilbert space; Symmetric linear relation; Nonnegative linear relation; Selfadjoint linear relation; Skew-symmetric linear relation; Skew-adjoint linear relation; DIRAC STRUCTURES; EXTENSIONS; OPERATORS; SUMS;
D O I
10.1016/j.jmaa.2018.09.063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main objective of this paper is to provide range-type criteria for the self-adjointness of symmetric linear relations and for the skew-adjointness of skew-symmetric linear relations in real or complex Hilbert spaces, respectively. These range-type criteria involve powers of linear relations. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:186 / 200
页数:15
相关论文
共 25 条
[21]   Self-adjointness of the 2D Dirac Operator with Singular Interactions Supported on Star Graphs [J].
Frymark, Dale ;
Lotoreichik, Vladimir .
ANNALES HENRI POINCARE, 2023, 24 (01) :179-221
[22]   General i-shell interactions for the two-dimensional Dirac operator: self-adjointness and approximation [J].
Cassano, Biagio ;
Lotoreichik, Vladimir ;
Mas, Albert ;
Tusek, Matej .
REVISTA MATEMATICA IBEROAMERICANA, 2023, 39 (04) :1443-1492
[23]   Square Laplacian perturbed by inverse fourth-power potential. I Self-adjointness (real case) [J].
Okazawa, Noboru ;
Tamura, Hiroshi ;
Yokota, Tomomi .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2011, 141 :409-416
[24]   Essential Self-adjointness of Symmetric First-Order Differential Systems and Confinement of Dirac Particles on Bounded Domains in Rd [J].
Nenciu, Gheorghe ;
Nenciu, Irina ;
Obermeyer, Ryan .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 387 (01) :361-395
[25]   Essential self-adjointness, generalized eigenforms, and spectra for the (partial derivative)over-bar-Neumann problem on G-manifolds [J].
Perez, Joe J. ;
Stollmann, Peter .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (09) :2717-2740