Surface Activity and Aggregation Behavior of Polyhydroxylated Fullerenes in Aqueous Solutions

被引:3
作者
Shaikh, Nida [1 ]
Bernhard, Samuel P. [1 ]
Walker, Robert A. [2 ,3 ]
机构
[1] Montana State Univ, Chem & Biochem Dept, Bozeman, MT 59717 USA
[2] Montana State Univ, Chem & Biochem Dept, Bozeman, MT 59717 USA
[3] Montana State Univ, Montana Mat Sci Program, Bozeman, MT 59717 USA
基金
美国国家科学基金会;
关键词
SUM-FREQUENCY GENERATION; ADSORPTION; AEROSOL; NANOPARTICLES; C-60(OH)(24); SPECTROSCOPY; INTERFACES; SOLVATION; MECHANISM; RAMAN;
D O I
10.1021/acs.langmuir.2c01052
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polyhydroxylated fullerene (PHF) surface activity and aggregation behavior at the air-water interface were examined using surface tension and resonance-enhanced second harmonic generation (SHG). Surface tension data showed that PHFs are surface active with a limiting surface excess corresponding to 130 angstrom(2)/molecule in aqueous (Millipore water) solutions. Increasing the solution-phase ionic strength (through the addition of NaCl) reduces the PHF surface excess. Conductivity measurements show that PHFs carry a single charge, presumably negative. Surface-specific SHG experiments show a small but measurable fixed wavelength, nonlinear response from solutions having surface excess coverages as low as similar to 400 angstrom(2)/molecule. The SHG response of PHF solutions in the low-concentration limit shows unexpected behavior, implying that at bulk concentrations below 0.06 mg/mL, PHF monomers adsorb to the surface and interfere destructively with the intrinsic nonlinear susceptibility of the aqueous/vapor interface, leading to a similar to 75% reduction in the SH signal. Above a PHF concentration of 0.0.06 mg/mL, the SH signal begins to rise in the Millipore and 50 mM NaCl solutions but remains very low in the 500 mM NaCl solutions. From this behavior, we infer that an increased nonlinear optical response is due to adsorbed aggregates.
引用
收藏
页码:10412 / 10418
页数:7
相关论文
共 70 条
  • [51] Fullerenol Synthesis and Identification. Properties of the Fullerenol Water Solutions
    Semenov, Konstantin N.
    Charykov, Nikolai A.
    Keskinov, Viktor N.
    [J]. JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2011, 56 (02) : 230 - 239
  • [52] Foliar applied fullerol differentially improves salt tolerance in wheat through ion compartmentalization, osmotic adjustments and regulation of enzymatic antioxidants
    Shafiq, Fahad
    Iqbal, Muhammad
    Ashraf, Muhammad Arslan
    Ali, Muhammad
    [J]. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2020, 26 (03) : 475 - 487
  • [53] Carbon Nanoparticle-Induced Changes to Lipid Monolayer Structure at Water-Air Interfaces
    Shaikh, Nida
    Andriolo, Jessica M.
    Skinner, Jack L.
    Walker, Robert A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2022, 126 (30) : 5667 - 5677
  • [54] Physicochemical study of water-soluble C60(OH)24 fullerenol
    Sharoyko, Vladimir V.
    Ageev, Sergei, V
    Meshcheriakov, Anatolii A.
    Akentiev, Alexander, V
    Noskov, Boris A.
    Rakipov, Ilnaz T.
    Charykov, Nikolay A.
    Kulenova, Natalya A.
    Shaimardanova, Botagoz K.
    Podolsky, Nikita E.
    Semenov, Konstantin N.
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2020, 311
  • [55] Vibrational Sum Frequency Generation Spectroscopy of Fullerene at Dielectric Interfaces
    Sohrabpour, Zahra
    Kearns, Patrick M.
    Massari, Aaron M.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (03) : 1666 - 1672
  • [56] Analysis and quantification of the diversities of aerosol life cycles within AeroCom
    Textor, C.
    Schulz, M.
    Guibert, S.
    Kinne, S.
    Balkanski, Y.
    Bauer, S.
    Berntsen, T.
    Berglen, T.
    Boucher, O.
    Chin, M.
    Dentener, F.
    Diehl, T.
    Easter, R.
    Feichter, H.
    Fillmore, D.
    Ghan, S.
    Ginoux, P.
    Gong, S.
    Kristjansson, J. E.
    Krol, M.
    Lauer, A.
    Lamarque, J. F.
    Liu, X.
    Montanaro, V.
    Myhre, G.
    Penner, J.
    Pitari, G.
    Reddy, S.
    Seland, O.
    Stier, P.
    Takemura, T.
    Tie, X.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 : 1777 - 1813
  • [57] Surfactant-Mediated Assembly of Amphiphilic Janus Spheres
    Tsyrenoya, Ayuna
    Miller, Kyle
    Yan, Jing
    Olson, Emily
    Anthony, Stephen M.
    Jiang, Shan
    [J]. LANGMUIR, 2019, 35 (18) : 6106 - 6111
  • [58] Investigation of the fullerenol solution parameters by combined technique based on light scattering
    Vachugova, Ekaterina
    Savchenko, Ekaterina
    Nepomnyashchaya, Elina
    [J]. 2020 VI INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND NANOTECHNOLOGY (IEEE ITNT-2020), 2020,
  • [59] Self-assembling, reactivity and molecular dynamics of fullerenol nanoparticles
    Vranes, Milan
    Borisev, Ivana
    Tot, Aleksandar
    Armakovic, Stevan
    Armakovic, Sanja
    Jovic, Danica
    Gadzuric, Slobodan
    Djordjevic, Aleksandar
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (01) : 135 - 144
  • [60] Efficient Synthesis of Fullerenol in Anion Form for the Preparation of Electrodeposited Films
    Wang, Fang F.
    Li, Ning
    Tian, Dong
    Xia, Guo F.
    Xiao, Ning
    [J]. ACS NANO, 2010, 4 (10) : 5565 - 5572