Development of artificial neural network model for predicting dynamic viscosity and specific heat of MWCNT nanoparticle-enhanced ionic liquids with different [HMIM]-cation base agents

被引:7
作者
Boldoo, Tsogtbilegt [1 ]
Lee, Minjung [1 ]
Kang, Yong Tae [2 ]
Cho, Honghyun [3 ]
机构
[1] Chosun Univ, Dept Mech Engn, Grad Sch, 309 Pilmundaero, Gwangju 61452, South Korea
[2] Korea Univ, Sch Mech Engn, 145 Anam Ro, Seoul 02841, South Korea
[3] Chosun Univ, Dept Mech Engn, 309 Pilmundaero, Gwangju 61452, South Korea
基金
新加坡国家研究基金会;
关键词
Artificial neural network; Ionic liquid; Multiwalled carbon nanotube; Dynamic viscosity; Specific heat; ABSORPTION-REFRIGERATION SYSTEM; THERMAL-CONDUCTIVITY; ANTIFREEZE; SOLVENTS; DENSITY;
D O I
10.1016/j.molliq.2021.117356
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The specific heat and dynamic viscosity of various 1-hexyl-3-methylimidazolium [HMIM]-cation with multiwalled carbon nanotube (MWCNT) nanoparticles are measured and used to develop an artificial neural network (ANN) model. The specific heat values of [C12MIM][Tf2N], [HMIM][Tf2N], [HMIM][TfO], and [HMIM][Pf(6)] ionic-liquid-based MWCNT nanofluids decrease with increasing nanoparticle concentration and increase with temperature. Also, the dynamic viscosity of the MWCNT nanoparticle-enhanced ionic liquids decreases at low concentrations; however, it increases significantly when the concentration increases up to 1 wt%. A new ANN model for predicting the dynamic viscosity and specific heat is developed, and the predictive values agree with the experimental data with high accuracy. The mean square error and R-value of the proposed predictive ANN model are 0.001291 and 0.9985, respectively. The maximum margin of deviation of the proposed ANN model for dynamic viscosity and specific heat is 9.63% and 4.3%. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 70 条
[41]   Ionic Liquids-Based Nanocolloids-A Review of Progress and Prospects in Convective Heat Transfer Applications [J].
Minea, Mina Adriana ;
Murshed, S. M. Sohel .
NANOMATERIALS, 2021, 11 (04)
[42]   Thermal stability and specific heats of coordinating ionic liquids [J].
Monteiro, Bernardo ;
Maria, Leonor ;
Cruz, Adelaide ;
Carretas, Jose M. ;
Marcalo, Joaquim ;
Leal, Joao P. .
THERMOCHIMICA ACTA, 2020, 684
[43]   Thermal storage density of ionic liquid mixtures: A preliminary study as thermal fluid [J].
Mora, Sebastian ;
Neculqueo, Gloria ;
Tapia, Ricardo A. ;
Urzua, Julio, I .
JOURNAL OF MOLECULAR LIQUIDS, 2019, 282 :221-225
[44]   Assessment of thermal conductivity enhancement of nano-antifreeze containing single-walled carbon nanotubes: Optimal artificial neural network and curve-fitting [J].
Moradikazerouni, Alireza ;
Hajizadeh, Ahmad ;
Safaei, Mohammad Reza ;
Afrand, Masoud ;
Yarmand, Hooman ;
Zulkifli, Nurin Wahidah Binti Mohd .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 521 :138-145
[45]   Understanding the heat capacity enhancement in ionic liquid-based nanofluids (ionanofluids) [J].
Oster, K. ;
Hardacre, C. ;
Jacquemin, J. ;
Ribeiro, A. P. C. ;
Elsinawi, A. .
JOURNAL OF MOLECULAR LIQUIDS, 2018, 253 :326-339
[46]   Ionic liquid-based nanofluids (ionanofluids) for thermal applications: an experimental thermophysical characterization [J].
Oster, Kamil ;
Hardacre, Christopher ;
Jacquemin, Johan ;
Ribeiro, Ana P. C. ;
Elsinawi, Abdulaziz .
PURE AND APPLIED CHEMISTRY, 2019, 91 (08) :1309-1340
[47]   Extensive Databases and Group Contribution QSPRs of Ionic Liquid Properties. 3: Surface Tension [J].
Paduszynski, Kamil .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (15) :5705-5720
[48]   Rheological behavior of multiwalled carbon nanotube-imidazolium tosylate ionic liquid dispersions [J].
Pamies, R. ;
Espejo, C. ;
Carrion, F. J. ;
Morina, A. ;
Neville, A. ;
Bermudez, M. D. .
JOURNAL OF RHEOLOGY, 2017, 61 (02) :279-289
[49]   Exergy Based Analysis of LiCl-H2O Absorption Cooling System [J].
Patel, Jatin ;
Pandya, Bhargav ;
Mudgal, Anurag .
INTERNATIONAL CONFERENCE ON RECENT ADVANCEMENT IN AIR CONDITIONING AND REFRIGERATION, RAAR 2016, 2017, 109 :261-269
[50]   Develop optimal network topology of artificial neural network (AONN) to predict the hybrid nanofluids thermal conductivity according to the empirical data of Al2O3 - Cu nanoparticles dispersed in ethylene glycol [J].
Peng, Yeping ;
Parsian, Amir ;
Khodadadi, Hossein ;
Akbari, Mohammad ;
Ghani, Kamal ;
Goodarzi, Marjan ;
Quang-Vu Bach .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 549