SOME IMPROVEMENTS ON THE Lp INEQUALITIES FOR DIFFUSION PROCESSES

被引:1
作者
Shen, Jing [1 ,2 ]
Xu, Xiaochuan [2 ]
Ren, Yaofeng [2 ]
机构
[1] Wenhua Coll, Dept Math, Wuhan 430074, Peoples R China
[2] Naval Univ Engn, Dept Appl Math, Coll Sci, Wuhan 430033, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2019年 / 13卷 / 04期
关键词
L-p inequality; Davis-type inequality; domination inequality; diffusion process; Ornstein-Uhlenbeck process; Bessel process; reflected Brownian motion with drift; STOPPING-TIMES; MAXIMAL INEQUALITIES; DOMINATION;
D O I
10.7153/jmi-2019-13-75
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give some improvements on the L-p (0 < p < alpha) inequalities for diffusion processes. We obtain smaller constants in the L-p inequalities and derive that the growth rates of the constants. as p -> 0(+), grows like O (1/p(alpha)) , instead of the exponential of 1/p. Finally, we apply the improved inequalities to the Ornstein-Uhlenbeck processes. Bessel processes and reflected Brownian motion with drift and get better constants.
引用
收藏
页码:1057 / 1069
页数:13
相关论文
共 16 条
[1]  
[Anonymous], 2004, GRUNDLEHREN MATH WIS
[2]  
Botnikov YL, 2006, J MATH SCI, V137, P4502, DOI DOI 10.1007/S10958-006-0242-3
[3]   EXIT TIMES OF BROWNIAN-MOTION, HARMONIC MAJORIZATION, AND HARDY SPACES [J].
BURKHOLDER, DL .
ADVANCES IN MATHEMATICS, 1977, 26 (02) :182-205
[4]   STOPPING-TIMES OF BESSEL PROCESSES [J].
DEBLASSIE, RD .
ANNALS OF PROBABILITY, 1987, 15 (03) :1044-1051
[5]  
DEBLASSIE RD, 1986, T AM MATH SOC, V295, P765
[6]   EQUIVALENT TO MARTINGALE SQUARE FUNCTION INEQUALITY [J].
GORDON, L .
ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (06) :1927-1934
[7]   Maximal inequalities for Bessel processes [J].
Graversen, SE ;
Peskir, G .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 1998, 2 (02) :99-119
[8]   Maximal inequalities for the Ornstein-Uhlenbeck process [J].
Graversen, SE ;
Peskir, G .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (10) :3035-3041
[9]  
LENGLART E, 1977, ANN I H POINCARE B, V13, P171
[10]   Bounding the maximal height of a diffusion by the time elapsed [J].
Peskir, G .
JOURNAL OF THEORETICAL PROBABILITY, 2001, 14 (03) :845-855