Knots and random walks in vibrated granular chains

被引:92
作者
Ben-Naim, E
Daya, ZA
Vorobieff, P
Ecke, RE
机构
[1] Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Univ Calif Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[3] Univ Calif Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp, Los Alamos, NM 87545 USA
[4] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA
关键词
D O I
10.1103/PhysRevLett.86.1414
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study experimentally statistical properties of the opening times of knots in vertically vibrated granular chains. Our measurements are in good qualitative and quantitative agreement with a theoretical model involving three random walks interacting via hard-core exclusion in one spatial dimension. In particular, the knot survival probability follows a universal scaling function which is independent of the chain length, with a corresponding diffusive characteristic time scale. Both the large-exit-time and the small-exit-time tails of the distribution are suppressed exponentially, and the corresponding decay coefficients ore in excellent agreement with theoretical values.
引用
收藏
页码:1414 / 1417
页数:4
相关论文
共 14 条
[1]   Individual entanglements in a simulated polymer melt [J].
BenNaim, E ;
Grest, GS ;
Witten, TA ;
Baljon, ARC .
PHYSICAL REVIEW E, 1996, 53 (02) :1816-1822
[2]  
Carslaw H. S., 1959, CONDUCTION HEAT SOLI
[3]  
de Gennes P.G., 1979, SCALING CONCEPTS POL
[4]  
Doi M., 1986, The Theory of Polymer Dynamics
[5]   WALKS, WALLS, WETTING, AND MELTING [J].
FISHER, ME .
JOURNAL OF STATISTICAL PHYSICS, 1984, 34 (5-6) :667-729
[6]   LOCAL KNOT MODEL OF ENTANGLED POLYMER-CHAINS .1. COMPUTER-SIMULATIONS OF LOCAL KNOTS AND THEIR COLLECTIVE MOTION [J].
IWATA, K ;
TANAKA, M .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (10) :4100-4111
[7]   Granular solids, liquids, and gases [J].
Jaeger, HM ;
Nagel, SR ;
Behringer, RP .
REVIEWS OF MODERN PHYSICS, 1996, 68 (04) :1259-1273
[8]   KNOTTEDNESS IN RING POLYMERS [J].
KONIARIS, K ;
MUTHUKUMAR, M .
PHYSICAL REVIEW LETTERS, 1991, 66 (17) :2211-2214
[9]   HEXAGONS, KINKS, AND DISORDER IN OSCILLATED GRANULAR LAYERS [J].
MELO, F ;
UMBANHOWAR, PB ;
SWINNEY, HL .
PHYSICAL REVIEW LETTERS, 1995, 75 (21) :3838-3841
[10]  
Murasugi K., 1996, KNOT THEORY ITS APPL