Levy processes and Fourier multipliers

被引:56
作者
Banuelos, Rodrigo [1 ]
Bogdan, Krzysztof
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47906 USA
[2] Wroclaw Univ Technol, Math Inst, PL-50370 Wroclaw, Poland
基金
美国国家科学基金会;
关键词
Fourier multiplier; process with independent increments; martingale transform; singular integral;
D O I
10.1016/j.jfa.2007.05.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Fourier multipliers which result from modulating jumps of Levy processes. Using the theory of martingale transforms we prove that these operators are bounded in L-p (R-d) for 1 < p < infinity and we obtain the same explicit bound for their norm as the one known for the second order Riesz transforms. Published by Elsevier Inc.
引用
收藏
页码:197 / 213
页数:17
相关论文
共 20 条
[1]  
[Anonymous], 1982, N HOLLAND MATH STUD
[2]  
[Anonymous], 2003, ALGEBRA ANALIZ
[3]  
[Anonymous], 1999, CAMBRIDGE STUD ADV M
[4]  
[Anonymous], ANN ACAD SCI FENN A
[5]   Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transforms [J].
Banuelos, R ;
Wang, G .
DUKE MATHEMATICAL JOURNAL, 1995, 80 (03) :575-600
[6]  
Bañuelos R, 2003, INDIANA U MATH J, V52, P981
[7]  
BANUELOS R, IN PRESS T AM MATH S
[8]   BOUNDARY-VALUE-PROBLEMS AND SHARP INEQUALITIES FOR MARTINGALE TRANSFORMS [J].
BURKHOLDER, DL .
ANNALS OF PROBABILITY, 1984, 12 (03) :647-702
[9]  
BURKHOLDER DL, 1988, ASTERISQUE, P75
[10]   SINGULAR INTEGRAL OPERATORS AND DIFFERENTIAL EQUATIONS [J].
CALDERON, AP ;
ZYGMUND, A .
AMERICAN JOURNAL OF MATHEMATICS, 1957, 79 (04) :901-921