Hilbert functions, residual intersections, and residually S2 ideals

被引:23
作者
Chardin, M
Eisenbud, D
Ulrich, B
机构
[1] CNRS, Inst Math, F-75252 Paris 05, France
[2] Univ Paris 06, F-75252 Paris, France
[3] Math Sci Res Inst, Berkeley, CA 94720 USA
[4] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
Hilbert function; Hilbert polynomial; residual intersection; residually S-2; parsimonious; thrifty;
D O I
10.1023/A:1002442111114
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a homogeneous ring over an infinite field, I subset ofR a homogeneous ideal, and a subset ofI an ideal generated by s forms of degrees d(1),...,d(s) so that codim(a:I)greater than or equal tos. We give broad conditions for when the Hilbert function of R/a or of R/(a:I) is determined by I and the degrees d(1),...,d(s). These conditions are expressed in terms of residual intersections of I, culminating in the notion of residually S-2 ideals. We prove that the residually S-2 property is implied by the vanishing of certain Ext modules and deduce that generic projections tend to produce ideals with this property.
引用
收藏
页码:193 / 219
页数:27
相关论文
共 27 条
[1]   THIN ALGEBRAS OF EMBEDDING DIMENSION 3 [J].
ANICK, DJ .
JOURNAL OF ALGEBRA, 1986, 100 (01) :235-259
[2]  
APERY R, 1945, CR HEBD ACAD SCI, V220, P271
[3]  
Artin M., 1972, J MATH KYOTO U, V12, P307
[4]   THE KOSZUL ALGEBRA OF A CODIMENSION-2 EMBEDDING [J].
AVRAMOV, L ;
HERZOG, J .
MATHEMATISCHE ZEITSCHRIFT, 1980, 175 (03) :249-260
[5]   ON LIAISON, ARITHMETICAL BUCHSBAUM CURVES AND MONOMIAL CURVES IN P3 [J].
BRESINSKY, H ;
SCHENZEL, P ;
VOGEL, W .
JOURNAL OF ALGEBRA, 1984, 86 (02) :283-301
[6]   WHAT ANNIHILATES A MODULE [J].
BUCHSBAUM, DA ;
EISENBUD, D .
JOURNAL OF ALGEBRA, 1977, 47 (02) :231-243
[7]   ALGEBRA STRUCTURES FOR FINITE FREE RESOLUTIONS, AND SOME STRUCTURE THEOREMS FOR IDEALS OF CODIMENSION .3. [J].
BUCHSBAUM, DA ;
EISENBUD, D .
AMERICAN JOURNAL OF MATHEMATICS, 1977, 99 (03) :447-485
[8]  
CHARDIN M, UNPUB COMPUTING HILB
[9]  
FROBERG R, 1985, MATH SCAND, V56, P117
[10]  
GAETA F, 1952, 2 C GEOMETRIE ALGEBR