Understanding the retinal basis of vision across species

被引:195
作者
Baden, Tom [1 ,2 ]
Euler, Thomas [2 ,3 ]
Berens, Philipp [2 ,3 ,4 ,5 ]
机构
[1] Univ Sussex, Sch Life Sci, Sussex Neurosci, Brighton, E Sussex, England
[2] Univ Tubingen, Inst Ophthalm Res, Tubingen, Germany
[3] Univ Tubingen, Werner Reichardt Ctr Integrat Neurosci, Tubingen, Germany
[4] Univ Tubingen, Inst Bioinformat & Med Informat, Tubingen, Germany
[5] Univ Tubingen, Bernstein Ctr Computat Neurosci, Tubingen, Germany
基金
欧洲研究理事会; 英国生物技术与生命科学研究理事会; 英国科研创新办公室;
关键词
GANGLION-CELL LAYER; SPATIAL RESOLVING POWER; GENERATING ORIENTATION SELECTIVITY; ANIMAL COLOR-VISION; BIPOLAR CELLS; OPTIC-NERVE; QUANTITATIVE-ANALYSIS; EYE SHAPE; TOPOGRAPHIC SPECIALIZATIONS; DIRECTION SELECTIVITY;
D O I
10.1038/s41583-019-0242-1
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The vertebrate retina first evolved some 500 million years ago in ancestral marine chordates. Since then, the eyes of different species have been tuned to best support their unique visuoecological lifestyles. Visual specializations in eye designs, large-scale inhomogeneities across the retinal surface and local circuit motifs mean that all species' retinas are unique. Computational theories, such as the efficient coding hypothesis, have come a long way towards an explanation of the basic features of retinal organization and function; however, they cannot explain the full extent of retinal diversitywithin and across species. To build a truly general understanding of vertebrate vision and the retina's computational purpose, it is therefore important to more quantitatively relate different species' retinal functions to their specific natural environments and behavioural requirements. Ultimately, the goal of such efforts should be to build up to a more general theory of vision.
引用
收藏
页码:5 / 20
页数:16
相关论文
共 237 条
[81]   Retinal Parallel Processors: More than 100 Independent Microcircuits Operate within a Single Interneuron [J].
Grimes, William N. ;
Zhang, Jun ;
Graydon, Cole W. ;
Kachar, Bechara ;
Diamond, Jeffrey S. .
NEURON, 2010, 65 (06) :873-885
[82]  
Hart NS, 2002, J EXP BIOL, V205, P3925
[83]   The Relationship between Cortical Magnification Factor and Population Receptive Field Size in Human Visual Cortex: Constancies in Cortical Architecture [J].
Harvey, Ben M. ;
Dumoulin, Serge O. .
JOURNAL OF NEUROSCIENCE, 2011, 31 (38) :13604-13612
[84]   The primordial, blue-cone color system of the mouse retina [J].
Haverkamp, S ;
Wässle, H ;
Duebel, J ;
Kuner, T ;
Augustine, GJ ;
Feng, GP ;
Euler, T .
JOURNAL OF NEUROSCIENCE, 2005, 25 (22) :5438-5445
[85]   Characterization of an amacrine cell type of the mammalian retina immunoreactive for vesicular glutamate transporter 3 [J].
Haverkamp, S ;
Wässle, H .
JOURNAL OF COMPARATIVE NEUROLOGY, 2004, 468 (02) :251-263
[86]   RETINAL GANGLION-CELL DISTRIBUTION AND BEHAVIOR IN PROCELLARIIFORM SEABIRDS [J].
HAYES, BP ;
BROOKE, MD .
VISION RESEARCH, 1990, 30 (09) :1277-1289
[87]  
HAYES BP, 1983, EXP BRAIN RES, V49, P181
[88]  
Heitman Alexander, 2016, bioRxiv, DOI DOI 10.1101/045336
[89]   Connectomic reconstruction of the inner plexiform layer in the mouse retina [J].
Helmstaedter, Moritz ;
Briggman, Kevin L. ;
Turaga, Srinivas C. ;
Jain, Viren ;
Seung, H. Sebastian ;
Denk, Winfried .
NATURE, 2013, 500 (7461) :168-+
[90]   Whole-brain serial-section electron microscopy in larval zebrafish [J].
Hildebrand, David Grant Colburn ;
Cicconet, Marcelo ;
Iguel Torres, Russel M. ;
Choi, Woohyuk ;
Quan, Tran Minh ;
Moon, Jungmin ;
Wetzel, Arthur Willis ;
Champion, Andrew Scott ;
Graham, Brett Jesse ;
Randlett, Owen ;
Plummer, George Scott ;
Portugues, Ruben ;
Bianco, Isaac Henry ;
Saalfeld, Stephan ;
Baden, Alexander David ;
Lillaney, Kunal ;
Burns, Randal ;
Vogelstein, Joshua Tzvi ;
Schier, Alexander Franz ;
Lee, Wei-Chung Allen ;
Jeong, Won-Ki ;
Lichtman, Jeff William ;
Engert, Florian .
NATURE, 2017, 545 (7654) :345-+