Deep Reinforcement Learning Based Resource Management for DNN Inference in IIoT

被引:0
作者
Zhang, Weiting [1 ]
Yang, Dong [1 ]
Peng, Haixia [2 ]
Wu, Wen [2 ]
Quan, Wei [1 ]
Zhang, Hongke [1 ]
Shen, Xuemin [2 ]
机构
[1] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing, Peoples R China
[2] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON, Canada
来源
2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM) | 2020年
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
DNN inference; IIoT; resource management; deep deterministic policy gradient; EDGE; NETWORKS; INTERNET;
D O I
10.1109/GLOBECOM42002.2020.9322223
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we investigate the joint task assignment and resource allocation for deep neural network (DNN) inference in the device-edge-cloud based industrial Internet of things (IIoT) networks. To efficiently orchestrate the limited spectrum and computing resources in IIoT networks for massive DNN inference tasks, a resource management problem is formulated with the objective of maximizing the average inference accuracy while satisfying the quality-of-service of DNN inference tasks. Considering the strict delay requirements of inference tasks, we transform the formulated problem into a Markov decision process, and propose a deep deterministic policy gradient based learning algorithm to obtain the solution rapidly. Simulation results show that the proposed algorithm can achieve high average inference accuracy.
引用
收藏
页数:6
相关论文
共 50 条
[31]   Enhanced resource allocation in mobile edge computing using reinforcement learning based MOACO algorithm for IIOT [J].
Vimal, S. ;
Khari, Manju ;
Dey, Nilanjan ;
Gonzalez Crespo, Ruben ;
Robinson, Y. Harold .
COMPUTER COMMUNICATIONS, 2020, 151 :355-364
[32]   Multi-agent reinforcement learning for intelligent resource allocation in IIoT networks [J].
Rosenberger, Julia ;
Urlaub, Michael ;
Schramm, Dieter .
2021 IEEE GLOBAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INTERNET OF THINGS (GCAIOT), 2021, :118-119
[33]   Deep Reinforcement Learning-Based Task Offloading and Resource Allocation for Industrial IoT in MEC Federation System [J].
Do, Huong Mai ;
Tran, Tuan Phong ;
Yoo, Myungsik .
IEEE ACCESS, 2023, 11 :83150-83170
[34]   Novel Resource Allocation Algorithm of Edge Computing Based on Deep Reinforcement Learning Mechanism [J].
Zhang, Degan ;
Fan, Hongrui ;
Zhang, Jie .
19TH IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING WITH APPLICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2021), 2021, :437-444
[35]   Adaptive Storage Optimization Scheme for Blockchain-IIoT Applications Using Deep Reinforcement Learning [J].
Akrasi-Mensah, Nana Kwadwo ;
Agbemenu, Andrew Selasi ;
Nunoo-Mensah, Henry ;
Tchao, Eric Tutu ;
Ahmed, Abdul-Rahman ;
Keelson, Eliel ;
Sikora, Axel ;
Welte, Dominik ;
Kponyo, Jerry John .
IEEE ACCESS, 2023, 11 :1372-1385
[36]   DA-DRLS: Drift adaptive deep reinforcement learning based scheduling for IoT resource management [J].
Chowdhury, Abishi ;
Raut, Shital A. ;
Narman, Husnu S. .
JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2019, 138 :51-65
[37]   Deep-Reinforcement-Learning-Based Resource Management for Task Offloading in Integrated Terrestrial and Nonterrestrial Networks [J].
Ei, Nway Nway ;
Aung, Pyae Sone ;
Han, Zhu ;
Saad, Walid ;
Hong, Choong Seon .
IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (09) :11977-11993
[38]   Deep-Reinforcement-Learning-Based Predictive Maintenance Model for Effective Resource Management in Industrial IoT [J].
Ong, Kevin Shen Hoong ;
Wang, Wenbo ;
Niyato, Dusit ;
Friedrichs, Thomas .
IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (07) :5173-5188
[39]   Joint Resource Management for MC-NOMA: A Deep Reinforcement Learning Approach [J].
Wang, Shaoyang ;
Lv, Tiejun ;
Ni, Wei ;
Beaulieu, Norman C. ;
Guo, Y. Jay .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (09) :5672-5688
[40]   Position paper: deep reinforcement learning for real-time resource management [J].
Theile, Mirco ;
Sun, Binqi ;
Caccamo, Marco .
REAL-TIME SYSTEMS, 2025, :288-293