Recurrence Relations for Orthogonal Polynomials on Triangular Domains

被引:0
|
作者
Rababah, Abedallah [1 ]
机构
[1] Jordan Univ Sci & Technol, Dept Math, Irbid 22110, Jordan
关键词
recurrence relation; bivariate orthogonal polynomials; Bernstein polynomials; Legendre polynomials; triangular domains; 65Dxx; 33C45; BERNSTEIN;
D O I
10.3390/math4020025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In Farouki et al, 2003, Legendre-weighted orthogonal polynomials P-n,P-r(u, v, w), r = 0, 1,..., n, n >= 0 on the triangular domain T = {(u, v, w) : u, v, w >= 0, u + v + w = 1} are constructed, where u, v, w are the barycentric coordinates. Unfortunately, evaluating the explicit formulas requires many operations and is not very practical from an algorithmic point of view. Hence, there is a need for a more efficient alternative. A very convenient method for computing orthogonal polynomials is based on recurrence relations. Such recurrence relations are described in this paper for the triangular orthogonal polynomials, providing a simple and fast algorithm for their evaluation.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Orthogonal Polynomials: A set for square areas
    Bray, M
    OPTICAL FABRICATION, TESTING, AND METROLOGY, 2004, 5252 : 314 - 321
  • [42] Relative asymptotics for orthogonal matrix polynomials
    Branquinho, A.
    Marcellan, E.
    Mendes, A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (07) : 1458 - 1481
  • [43] Quadratic Decomposition of Bivariate Orthogonal Polynomials
    Branquinho, Amilcar
    Foulquie-Moreno, Ana
    Perez, Teresa E. E.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [44] On differential properties for bivariate orthogonal polynomials
    María Álvarez de Morales
    Lidia Fernández
    Teresa E. Pérez
    Miguel A. Piñar
    Numerical Algorithms, 2007, 45 : 153 - 166
  • [45] On differential properties for bivariate orthogonal polynomials
    Alvarez de Morales, Maria
    Fernandez, Lidia
    Perez, Teresa E.
    Pinar, Mignel A.
    NUMERICAL ALGORITHMS, 2007, 45 (1-4) : 153 - 166
  • [46] The Laguerre Constellation of Classical Orthogonal Polynomials
    Costas-Santos, Roberto S.
    MATHEMATICS, 2025, 13 (02)
  • [47] On a criterion of rationality for a series in orthogonal polynomials
    V. I. Buslaev
    Ukrainian Mathematical Journal, 2011, 62 : 1326 - 1332
  • [48] Quadratic Decomposition of Bivariate Orthogonal Polynomials
    Amílcar Branquinho
    Ana Foulquié-Moreno
    Teresa E. Pérez
    Mediterranean Journal of Mathematics, 2023, 20
  • [49] ORTHOGONAL POLYNOMIALS, ASSOCIATED POLYNOMIALS AND FUNCTIONS OF THE 2ND KIND
    VANASSCHE, W
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1991, 37 (1-3) : 237 - 249
  • [50] Multivariate generalized Bernstein polynomials: identities for orthogonal polynomials of two variables
    Stanisław Lewanowicz
    Paweł Woźny
    Iván Area
    Eduardo Godoy
    Numerical Algorithms, 2008, 49 : 199 - 220