SCHRODINGER EQUATIONS IN R4 INVOLVING THE BIHARMONIC OPERATOR WITH CRITICAL EXPONENTIAL GROWTH

被引:7
作者
Miyagaki, Olimpio H. [1 ]
Santana, Claudia R. [2 ]
Vieira, Ronei S. [3 ]
机构
[1] Univ Fed Sao Carlos, Ctr Ciencias Exatas & Tecnol, Dept Matemat, Sao Carlos, Brazil
[2] Univ Estadual Santa Cruz, Dept Ciencias Exatas & Tecnol, Ilheus, BA, Brazil
[3] Fed Inst Espirito Santo, Licenciatura Matemat, Cachoeiro Do Itapemirim, Brazil
基金
巴西圣保罗研究基金会;
关键词
elliptic equations; exponential growth; variational techniques; biharmonic operator; ground state solutions; NONTRIVIAL SOLUTIONS; POSITIVE SOLUTIONS; ELLIPTIC PROBLEMS; EXISTENCE; INEQUALITY;
D O I
10.1216/rmj.2021.51.243
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove the existence of at least one nontrivial ground state solution for fourth-order elliptic equations of the form (P) Delta(2)u -Delta u + u =K(x)[f(u) + g(u)], x epsilon R-4, u epsilon H-2(R-4), where Delta(2)u := Delta(Delta) is the biharmonic operator, f is a continuous nonnegative function with polynomial growth at infinity, g is a continuous nonnegative function with exponential growth and K is a positive bounded continuous function that can vanish at infinity. Our results complete the analysis made in F. Sani (Comm. Pure Appl. Anal. 12 (2013), 405-428), where the author studied Schrodinger equations involving the biharmonic operator with coercive potentials. Our approach is based on various techniques such as the mountain-pass theorem, Trundinger-Moser type inequalities and compactness results.
引用
收藏
页码:243 / 263
页数:21
相关论文
共 32 条
[1]   A SHARP INEQUALITY OF MOSER,J. FOR HIGHER-ORDER DERIVATIVES [J].
ADAMS, DR .
ANNALS OF MATHEMATICS, 1988, 128 (02) :385-398
[2]  
Adimurthi A., 1990, ANN SCUOLA NORM-SCI, V17, P393
[3]   Existence of solutions for a class of nonlinear Schrodinger equations with potential vanishing at infinity [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (04) :1977-1991
[4]   On the existence and concentration of positive solutions to a class of quasilinear elliptic problems on R [J].
Alves, Claudianor O. ;
Miyagaki, Olimpio H. ;
Monari Soares, Sergio H. .
MATHEMATISCHE NACHRICHTEN, 2011, 284 (14-15) :1784-1795
[5]   On a class of singular biharmonic problems involving critical exponents [J].
Alves, CO ;
do O, JM ;
Miyagaki, OH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 277 (01) :12-26
[6]  
Alves CO, 2002, ADV NONLINEAR STUD, V2, P437
[7]   Nontrivial solutions for a class of semilinear biharmonic problems involving critical exponents [J].
Alves, CO ;
do O, JM ;
Miyagaki, OH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 46 (01) :121-133
[8]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[9]  
Aouaoui S, 2019, ANN MAT PUR APPL, V198, P1331, DOI 10.1007/s10231-018-00821-w
[10]   SOLUTION TO BIHARMONIC EQUATION WITH VANISHING POTENTIAL [J].
Bastos, Waldemar D. ;
Miyagaki, Olimpio H. ;
Vieira, Ronei S. .
ILLINOIS JOURNAL OF MATHEMATICS, 2013, 57 (03) :839-854