Finite-horizon inverse optimal control for discrete-time nonlinear systems

被引:40
作者
Molloy, Timothy L. [1 ]
Ford, Jason J. [1 ]
Perez, Tristan [1 ,2 ]
机构
[1] Queensland Univ Technol, Sch Elect Engn & Comp Sci, Brisbane, Qld 4000, Australia
[2] Queensland Univ Technol, Inst Future Environm, Brisbane, Qld 4000, Australia
基金
澳大利亚研究理事会;
关键词
Optimal control; Discrete-time systems; Nonlinear systems;
D O I
10.1016/j.automatica.2017.09.023
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this note, we consider the problem of computing the parameters (or weights) of an optimal control objective function given optimal closed-loop state and control trajectories. We establish a method of inverse optimal control that exploits the discrete-time minimum principle. Under a testable matrix rank condition, our proposed method is guaranteed to recover the unknown objective-function parameters of finite-horizon discrete-time nonlinear optimal control problems. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:442 / 446
页数:5
相关论文
共 15 条
[1]  
Aghasadeghi N, 2014, IEEE INT CONF ROBOT, P6018, DOI 10.1109/ICRA.2014.6907746
[2]  
Aghasadeghi N, 2012, IEEE INT CONF ROBOT, P4962, DOI 10.1109/ICRA.2012.6225259
[3]  
[Anonymous], 2012, Dynamic programming and optimal control
[4]  
[Anonymous], 1994, LINEAR MATRIX INEQUA
[5]   ESTIMATING PARAMETERS IN OPTIMAL CONTROL PROBLEMS [J].
Hatz, Kathrin ;
Schloeder, Johannes P. ;
Bock, Hans Georg .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (03) :A1707-A1728
[6]  
Johnson M, 2013, IEEE DECIS CONTR P, P2906, DOI 10.1109/CDC.2013.6760325
[7]  
Keshavarz A, 2011, 2011 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL (ISIC), P613, DOI 10.1109/ISIC.2011.6045410
[8]  
Kuderer M, 2015, IEEE INT CONF ROBOT, P2641, DOI 10.1109/ICRA.2015.7139555
[9]  
Maillot T, 2013, IEEE DECIS CONTR P, P1792, DOI 10.1109/CDC.2013.6760142
[10]  
Molloy T. L., 2016, 2016 IEEE 55 ANN C D