Improving Protein-Ligand Docking Results with High-Throughput Molecular Dynamics Simulations

被引:216
作者
Guterres, Hugo [1 ,2 ,3 ]
Im, Wonpil [1 ,2 ,3 ,4 ]
机构
[1] Lehigh Univ, Dept Biol Sci, Bethlehem, PA 18015 USA
[2] Lehigh Univ, Dept Chem, Bethlehem, PA 18015 USA
[3] Lehigh Univ, Dept Bioengn, Bethlehem, PA 18015 USA
[4] Korea Inst Adv Study, Sch Computat Sci, Seoul 02455, South Korea
基金
新加坡国家研究基金会;
关键词
GENERAL FORCE-FIELD; SOFTWARE NEWS; DISCOVERY; BINDING; INHIBITORS; GUI; COMPUTATION; ANTAGONISM; ALGORITHMS; COMPLEX;
D O I
10.1021/acs.jcim.0c00057
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Structure-based virtual screening relies on classical scoring functions that often fail to reliably discriminate binders from nonbinders. In this work, we present a high-throughput protein-ligand complex molecular dynamics (MD) simulation that uses the output from AutoDock Vina to improve docking results in distinguishing active from decoy ligands in a directory of useful decoy-enhanced (DUD-E) dataset. MD trajectories are processed by evaluating ligand-binding stability using root-mean-square deviations. We select 56 protein targets (of 7 different protein classes) and 560 ligands (280 actives, 280 decoys) and show 22% improvement in ROC AUC (area under the curve, receiver operating characteristics curve), from an initial value of 0.68 (AutoDock Vina) to a final value of 0.83. The MD simulation demonstrates a robust performance across all seven different protein classes. In addition, some predicted ligand-binding modes are moderately refined during MD simulations. These results systematically validate the reliability of a physics-based approach to evaluate protein-ligand binding interactions.
引用
收藏
页码:2189 / 2198
页数:10
相关论文
共 60 条
[1]  
Allen M. P., 1987, COMPUTER SIMULATION, DOI DOI 10.2307/2938686
[2]   Combining docking and molecular dynamic simulations in drug design [J].
Alonso, Hernan ;
Bliznyuk, Andrey A. ;
Gready, Jill E. .
MEDICINAL RESEARCH REVIEWS, 2006, 26 (05) :531-568
[3]   Nuclear receptor structure: Implications for function [J].
Bain, David L. ;
Heneghan, Aaron F. ;
Connaghan-Jones, Keith D. ;
Miura, Michael T. .
ANNUAL REVIEW OF PHYSIOLOGY, 2007, 69 :201-220
[4]   ALGORITHMS FOR CONSTRAINED MOLECULAR-DYNAMICS [J].
BARTH, E ;
KUCZERA, K ;
LEIMKUHLER, B ;
SKEEL, RD .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1995, 16 (10) :1192-1209
[5]   Comparative study of several algorithms for flexible ligand docking [J].
Bursulaya, BD ;
Totrov, M ;
Abagyan, R ;
Brooks, CL .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2003, 17 (11) :755-763
[6]   Deep learning and virtual drug screening [J].
Carpenter, Kristy A. ;
Cohen, David S. ;
Jarrell, Juliet T. ;
Huang, Xudong .
FUTURE MEDICINAL CHEMISTRY, 2018, 10 (21) :2557-2567
[7]   A computational study of the binding of propidium to the peripheral anionic site of human acetylcholinesterase [J].
Cavalli, A ;
Bottegoni, G ;
Raco, C ;
De Vivo, M ;
Recanatini, M .
JOURNAL OF MEDICINAL CHEMISTRY, 2004, 47 (16) :3991-3999
[8]   OpenMM 7: Rapid development of high performance algorithms for molecular dynamics [J].
Eastman, Peter ;
Swails, Jason ;
Chodera, John D. ;
McGibbon, Robert T. ;
Zhao, Yutong ;
Beauchamp, Kyle A. ;
Wang, Lee-Ping ;
Simmonett, Andrew C. ;
Harrigan, Matthew P. ;
Stern, Chaya D. ;
Wiewiora, Rafal P. ;
Brooks, Bernard R. ;
Pande, Vijay S. .
PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (07)
[9]   A SMOOTH PARTICLE MESH EWALD METHOD [J].
ESSMANN, U ;
PERERA, L ;
BERKOWITZ, ML ;
DARDEN, T ;
LEE, H ;
PEDERSEN, LG .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (19) :8577-8593
[10]   Molecular dynamics-driven drug discovery: leaping forward with confidence [J].
Ganesan, Aravindhan ;
Coote, Michelle L. ;
Barakat, Khaled .
DRUG DISCOVERY TODAY, 2017, 22 (02) :249-269