Differentiable mappings on products with different degrees of differentiability in the two factors

被引:23
作者
Alzaareer, Hamza [1 ]
Schmeding, Alexander [1 ]
机构
[1] Univ Paderborn, Math Inst, Warburger Str 100, D-33098 Paderborn, Germany
关键词
Differential calculus; Infinite-dimensional manifolds; Smooth compact-open topology; Exponential law; Ordinary differential equation; K-space; LIE GROUP STRUCTURES; REPRESENTATIONS; SMOOTH;
D O I
10.1016/j.exmath.2014.07.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop differential calculus of C-r,C-s-mappings on products of locally convex spaces and prove exponential laws for such mappings. As an application, we consider differential equations in Banach spaces depending on a parameter in a locally convex space. Under suitable assumptions, the associated flows are mappings of class C-r,C-s. (C) 2014 Elsevier GmbH. All rights reserved.
引用
收藏
页码:184 / 222
页数:39
相关论文
共 41 条
  • [21] Glöckner H, 2011, PROG MATH, V288, P243, DOI 10.1007/978-0-8176-4741-4_8
  • [22] Final group topologies, Kac-Moody groups and Pontryagin duality
    Gloeckner, Helge
    Gramlich, Ralf
    Hartnick, Tobias
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2010, 177 (01) : 49 - 101
  • [23] THE INVERSE FUNCTION THEOREM OF NASH AND MOSER
    HAMILTON, RS
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 7 (01) : 65 - 222
  • [24] Keller H.H., 1974, Lecture Notes in Mathematics, V417
  • [25] Kelley L., 1975, GEN TOPOLOGY
  • [26] Kriegl A., 1997, The convenient setting of global analysis, V53
  • [27] Kriegl A., 1997, Jour. of Lie Theory, V7, P61
  • [28] Lang S., 2001, GRADUATE TEXTS MATH, V191
  • [29] Michor P.W., 1980, Shiva Mathematics Series, V3
  • [30] Milnor J., 1984, Les Houches Session XL: Relativity, Groups and Topology II, P1007