Thermodynamic analysis of heat driven Combined Cooling Heating and Power system (CCHP) with energy storage for long distance transmission

被引:23
作者
Han, Bing-Chuan [1 ]
Cheng, Wen-Long [1 ]
Li, Yi-Yi [1 ]
Nian, Yong-Le [1 ]
机构
[1] Univ Sci & Technol China, Dept Thermal Sci & Energy Engn, Hefei 230027, Anhui, Peoples R China
基金
中国博士后科学基金;
关键词
Combined cooling heating and power; Ammonia-water solution; Solution energy storage; Long distance transmission; Basic solution concentration; REFRIGERATION CYCLE; THEORETICAL-ANALYSIS; PERFORMANCE ANALYSIS; WIND POWER; EXERGY; TEMPERATURE; TRANSPORTATION; OPTIMIZATION; COGENERATION; GENERATION;
D O I
10.1016/j.enconman.2017.10.058
中图分类号
O414.1 [热力学];
学科分类号
摘要
The instability and intermittency feature of low grade heat sources and renewable energy brought about utilization problems, and in most cases, energy source site locates far away from energy demand site, how to implement long distance transmission of energy has been a challenge. To solve above problems, a novel combined power, cooling with solution energy storage and long distance heating/cooling system without heat preservation is proposed. The system integrates Kalina cycle with solution energy storage cycle, which is based on concentration difference of ammonia-strong, ammonia-weak solutions and liquid ammonia, and capable of changing operation modes flexibly according to heat sources and client needs. An analytical model is established and exergy destruction analysis is conducted to indicate exergy losses distribution of components. After optimization of proposed system, exergy efficiency is 0.57, and maximum solution energy storage density reaches 523 MJ/m(3). Furthermore, thermal energy is storaged in the form of latent heat, and the working fluids are transported under ambient temperature, therefore, thermal insulation are unnecessary, the maximum heat supply distance is 143 km, 15.7 times that of typical hot water transmission system, and pipe diameter is reduced to 3/20, pump work consumption and construction costs can be reduced dramatically as a consequence.
引用
收藏
页码:102 / 117
页数:16
相关论文
共 50 条
  • [21] Techno-economic analysis of combined cooling, heating, and power (CCHP) system integrated with multiple renewable energy sources and energy storage units
    Assareh, Ehsanolah
    Dejdar, Ali
    Ershadi, Ali
    Jafarian, Masoud
    Mansouri, Mohammadhossein
    Roshani, Amir Salek
    Azish, Ehsan
    Saedpanah, Ehsan
    Lee, Moonyong
    ENERGY AND BUILDINGS, 2023, 278
  • [22] Exergy analysis of a Combined Cooling, Heating and Power system integrated with wind turbine and compressed air energy storage system
    Mohammadi, Amin
    Ahmadi, Mohammad H.
    Bidi, Mokhtar
    Joda, Fatemeh
    Valero, Antonio
    Uson, Sergio
    ENERGY CONVERSION AND MANAGEMENT, 2017, 131 : 69 - 78
  • [23] Feasibility Analysis of the Operation Strategies for Combined Cooling, Heating and Power Systems (CCHP) based on the Energy-Matching Regime
    Feng, Lejun
    Dai, Xiaoye
    Mo, Junrong
    Shi, Lin
    JOURNAL OF THERMAL SCIENCE, 2020, 29 (05) : 1149 - 1164
  • [24] Thermodynamic analyses of an innovative system combined dehumidification, cooling and heating driven by solar energy
    Xu, Aixiang
    Wang, Yizhang
    Song, Tingting
    Xie, Nan
    Liu, Zhiqiang
    Yang, Sheng
    ENERGY CONVERSION AND MANAGEMENT, 2023, 279
  • [25] Thermodynamic analysis of a combined cooling, heating, and power system integrated with full-spectrum hybrid solar energy device
    Wang, Jiangjiang
    Han, Zepeng
    Liu, Yi
    Zhang, Xutao
    Cui, Zhiheng
    ENERGY CONVERSION AND MANAGEMENT, 2021, 228
  • [26] The exergy and energy level analysis of a combined cooling, heating and power system driven by a small scale gas turbine at off design condition
    Chen, Qiang
    Han, Wei
    Zheng, Jian-jiao
    Sui, Jun
    Jin, Hong-guang
    APPLIED THERMAL ENGINEERING, 2014, 66 (1-2) : 590 - 602
  • [27] Reliability and cost analysis of the redundant design of a combined cooling, heating and power (CCHP) system
    Jiang, Jinming
    Gao, Weijun
    Wei, Xindong
    Li, Yanxue
    Kuroki, Soichiro
    ENERGY CONVERSION AND MANAGEMENT, 2019, 199
  • [28] Energy, exergy and thermoeconomic analysis of a combined cooling, heating and power (CCHP) system with gas turbine prime mover
    Ghaebi, Hadi
    Amidpour, Majid
    Karimkashi, Shervin
    Rezayan, Omid
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (08) : 697 - 709
  • [29] Thermodynamic performance assessment of a small size CCHP (combined cooling heating and power) system with numerical models
    Jannelli, E.
    Minutillo, M.
    Cozzolino, R.
    Falcucci, G.
    ENERGY, 2014, 65 : 240 - 249
  • [30] Thermodynamic investigation of a new combined cooling, heating, and power (CCHP) system driven by parabolic trough solar collectors (PTSCs): A case study
    Haghghi, Maghsoud Abdollahi
    Pesteei, Seyed Mehdi
    Chitsaz, Ata
    Hosseinpour, Javad
    APPLIED THERMAL ENGINEERING, 2019, 163