A combinatorial approach to doubly transitive permutation groups

被引:2
作者
Miyamoto, Izumi [1 ]
机构
[1] Univ Yamanashi, Dept Comp Sci & Media Engn, Kofu, Yamanashi 4008511, Japan
关键词
multiply transitive finite groups; association schemes; superschemes; computational method;
D O I
10.1016/j.disc.2007.08.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a doubly but not triply transitive group on a set X. We give an algorithm to construct the orbits of G acting on X x X x X by combining those of its stabilizer H of a point of X if the group H is given first, we compute the orbits of its transitive extension G, if it exists. We apply our algorithm to G = PSL(m, q) and Sp(2m, 2), m >= 3, successfully. We go forward to compute the transitive extension of G itself. In our construction we use a superscheme defined by the orbits of H on X x X x X and do not use group elements. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:3073 / 3081
页数:9
相关论文
共 13 条
[1]  
Bannai E, 1984, Algebraic Combinatorics I: Association Schemes
[2]  
BANNAI E, 1971, OSAKA J MATH, V8, P131
[3]  
GAP-Groups, 2000, GAP GROUPS ALG PROGR
[5]  
Huppert B., 1982, FINITE GROUPS, VIII
[6]  
IVANYOS G, 1997, COMBINATORICS EVDOKI
[7]   CHARACTERS OF FINITE QUASIGROUPS .4. PRODUCTS AND SUPERSCHEMES [J].
JOHNSON, KW ;
SMITH, JDH .
EUROPEAN JOURNAL OF COMBINATORICS, 1989, 10 (03) :257-263
[8]  
KANTOR WM, 1985, CONT MATH, V45, P159
[9]   Computing isomorphisms of association schemes and its application [J].
Miyamoto, I .
JOURNAL OF SYMBOLIC COMPUTATION, 2001, 32 (1-2) :133-141
[10]  
MIYAMOTO I, 2004, RIMS KOKYUROKU COMPU, V1395, P185