Mitochondrial Mayhem: The Mitochondrion as a Modulator of Iron Metabolism and Its Role in Disease

被引:87
作者
Huang, Michael Li-Hsuan
Lane, Darius J. R.
Richardson, Des R. [1 ,2 ]
机构
[1] Univ Sydney, Iron Metab & Chelat Program, Dept Pathol, Sydney, NSW 2006, Australia
[2] Univ Sydney, Bosch Inst, Sydney, NSW 2006, Australia
基金
英国医学研究理事会;
关键词
LINKED SIDEROBLASTIC ANEMIA; SULFUR CLUSTER BIOGENESIS; MESSENGER-RNA LEVELS; YEAST FRATAXIN; RESPONSIVE ELEMENT; FRIEDREICHS-ATAXIA; HEME-SYNTHESIS; ABC TRANSPORTER; SUCCINATE-DEHYDROGENASE; FERRITIN EXPRESSION;
D O I
10.1089/ars.2011.3921
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mitochondrion plays vital roles in various aspects of cellular metabolism, ranging from energy transduction and apoptosis to the synthesis of important molecules such as heme. Mitochondria are also centrally involved in iron metabolism, as exemplified by disruptions in mitochondrial proteins that lead to perturbations in whole-cell iron processing. Recent investigations have identified a host of mitochondrial proteins (e.g., mitochondrial ferritin; mitoferrins 1 and 2; ABCBs 6, 7, and 10; and frataxin) that may play roles in the homeostasis of mitochondrial iron. These mitochondrial proteins appear to participate in one or more processes of iron storage, iron uptake, and heme and iron-sulfur cluster synthesis. In this review, we present and critically discuss the evidence suggesting that the mitochondrion may contribute to the regulation of whole-cell iron metabolism. Further, human diseases that arise from a dysregulation of these mitochondrial molecules reveal the ability of the mitochondrion to communicate with cytosolic iron metabolism to coordinate whole-cell iron processing and to fulfill the high demands of this organelle for iron. This review highlights new advances in understanding iron metabolism in terms of novel molecular players and diseases associated with its dysregulation. Antioxid. Redox Signal. 15, 3003-3019.
引用
收藏
页码:3003 / 3019
页数:17
相关论文
共 156 条
[1]   Iron-dependent self assembly of recombinant yeast frataxin: Implications for Friedreich ataxia [J].
Adamec, J ;
Rusnak, F ;
Owen, WG ;
Naylor, S ;
Benson, LM ;
Gacy, AM ;
Isaya, G .
AMERICAN JOURNAL OF HUMAN GENETICS, 2000, 67 (03) :549-562
[2]   A structural approach to understanding the iron-binding properties of phylogenetically different frataxins [J].
Adinolfi, S ;
Trifuoggi, M ;
Politou, AS ;
Martin, S ;
Pastore, A .
HUMAN MOLECULAR GENETICS, 2002, 11 (16) :1865-1877
[3]   Bacterial frataxin CyaY is the gatekeeper of iron-sulfur cluster formation catalyzed by IscS [J].
Adinolfi, Salvatore ;
Iannuzzi, Clara ;
Prischi, Filippo ;
Pastore, Chiara ;
Iametti, Stefania ;
Martin, Stephen R. ;
Bonomi, Franco ;
Pastore, Annalisa .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2009, 16 (04) :390-396
[4]   Decreased liver hepcidin expression in the Hfe knockout mouse [J].
Ahmad, KA ;
Ahmann, JR ;
Migas, MC ;
Waheed, A ;
Britton, RS ;
Bacon, BR ;
Sly, WS ;
Fleming, RE .
BLOOD CELLS MOLECULES AND DISEASES, 2002, 29 (03) :361-366
[5]   Mutation of a putative mitochondrial iron transporter gene (ABC7) in X-linked sideroblastic anemia and ataxia (XLSA/A) [J].
Allikmets, R ;
Raskind, WH ;
Hutchinson, A ;
Schueck, ND ;
Dean, M ;
Koeller, DM .
HUMAN MOLECULAR GENETICS, 1999, 8 (05) :743-749
[6]   Iron-induced oligomerization of yeast frataxin homologue Yfh1 is dispensable in vivo [J].
Aloria, K ;
Schilke, B ;
Andrew, A ;
Craig, EA .
EMBO REPORTS, 2004, 5 (11) :1096-1101
[7]   Friedreich's ataxia [J].
Alper, G ;
Narayanan, V .
PEDIATRIC NEUROLOGY, 2003, 28 (05) :335-341
[8]   ABCs of erythroid mitochondrial iron uptake [J].
Andrews, Nancy C. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (38) :16012-16013
[9]   Ferritins: A family of molecules for iron storage, antioxidation and more [J].
Arosio, Paolo ;
Ingrassia, Rosaria ;
Cavadini, Patrizia .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2009, 1790 (07) :589-599
[10]   Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin [J].
Babcock, M ;
deSilva, D ;
Oaks, R ;
DavisKaplan, S ;
Jiralerspong, S ;
Montermini, L ;
Pandolfo, M ;
Kaplan, J .
SCIENCE, 1997, 276 (5319) :1709-1712