An Architecture-Independent Instruction Shuffler to Protect against Side-Channel Attacks

被引:22
|
作者
Bayrak, Ali Galip [1 ]
Velickovic, Nikola [1 ]
Ienne, Paolo [1 ]
Burleson, Wayne [2 ]
机构
[1] Ecole Polytech Fed Lausanne, Sch Comp & Commun Sci, CH-1015 Lausanne, Switzerland
[2] Univ Massachusetts, Dept Elect & Comp Engn, Amherst, MA 01003 USA
关键词
Design; Security; Performance; Side-channel attacks; instruction shuffler; random permutation generation; BIT PERMUTATIONS; DESIGN;
D O I
10.1145/2086696.2086699
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Embedded cryptographic systems, such as smart cards, require secure implementations that are robust to a variety of low-level attacks. Side-Channel Attacks (SCA) exploit the information such as power consumption, electromagnetic radiation and acoustic leaking through the device to uncover the secret information. Attackers can mount successful attacks with very modest resources in a short time period. Therefore, many methods have been proposed to increase the security against SCA. Randomizing the execution order of the instructions that are independent, i.e., random shuffling, is one of the most popular among them. Implementing instruction shuffling in software is either implementation specific or has a significant performance or code size overhead. To overcome these problems, we propose in this work a generic custom hardware unit to implement random instruction shuffling as an extension to existing processors. The unit operates between the CPU and the instruction cache (or memory, if no cache exists), without any modification to these components. Both true and pseudo random number generators are used to dynamically and locally provide the shuffling sequence. The unit is mainly designed for in-order processors, since the embedded devices subject to these kind of attacks use simple in-order processors. More advanced processors (e.g., superscalar, VLIW or EPIC processors) are already more resistant to these attacks because of their built-in ILP and wide word size. Our experiments on two different soft in-order processor cores, i.e., OpenRISC and MicroBlaze, implemented on FPGA show that the proposed unit could increase the security drastically with very modest resource overhead. With around 2% area, 1.5% power and no performance overhead, the shuffler increases the effort to mount a successful power analysis attack on AES software implementation over 360 times.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Side-Channel Attacks on Mobile and Wearable Systems
    Nahapetian, Ani
    2016 13TH IEEE ANNUAL CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE (CCNC), 2016,
  • [42] Mobile Social Networking Under Side-Channel Attacks: Practical Security Challenges
    Ometov, Aleksandr
    Levina, Alla
    Borisenko, Pavel
    Mostovoy, Roman
    Orsino, Antonino
    Andreev, Sergey
    IEEE ACCESS, 2017, 5 : 2591 - 2601
  • [43] SC-DDPL as a Countermeasure against Static Power Side-Channel Attacks
    Bellizia, Davide
    Della Sala, Riccardo
    Scotti, Giuseppe
    CRYPTOGRAPHY, 2021, 5 (03)
  • [44] Compositional Verification of First-Order Masking Countermeasures against Power Side-Channel Attacks
    Gao, Pengfei
    Song, Fu
    Chen, Taolue
    ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY, 2024, 33 (03)
  • [45] Wireless Charging Power Side-Channel Attacks
    La Cour, Alexander S.
    Afridi, Khurram K.
    Suh, G. Edward
    CCS '21: PROCEEDINGS OF THE 2021 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2021, : 651 - 665
  • [46] Improved side-channel collision attacks on AES
    Bogdanov, Andrey
    SELECTED AREAS IN CRYPTOGRAPHY, 2007, 4876 : 84 - 95
  • [47] DES with any reduced masked rounds is not secure against side-channel attacks
    Kim, Jongsung
    Lee, Yuseop
    Lee, Sangjin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (02) : 347 - 354
  • [48] Shared FPGAs and the Holy Grail: Protections against Side-Channel and Fault Attacks
    Glamocanin, Ognjen
    Mahmoud, Dina G.
    Regazzoni, Francesco
    Stojilovic, Mirjana
    PROCEEDINGS OF THE 2021 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2021), 2021, : 1645 - 1650
  • [49] New Versions of Miller-loop Secured Against Side-Channel Attacks
    El Mrabet, Nadia
    Ghammam, Loubna
    Meloni, Nicolas
    Fouotsa, Emmanuel
    ARITHMETIC OF FINITE FIELDS, WAIFI 2022, 2023, 13638 : 269 - 287
  • [50] Beyond the CPU: Side-Channel Attacks on GPUs
    Naghibijouybari, Hoda
    Neupane, Ajaya
    Qian, Zhiyun
    Abu-Ghazaleh, Nael
    IEEE DESIGN & TEST, 2021, 38 (03) : 15 - 21