A Coding Theory Approach to Noisy Compressive Sensing Using Low Density Frames

被引:16
作者
Akcakaya, Mehmet [1 ]
Park, Jinsoo [2 ]
Tarokh, Vahid [2 ]
机构
[1] Harvard Univ, Sch Med, Beth Israel Deaconess Med Ctr, Boston, MA 02215 USA
[2] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
Belief propagation; coding theory; compressive sensing; EM algorithm; Gaussian scale mixtures; low density frames; sum product algorithm; PARITY-CHECK CODES; SCALE MIXTURES; SPARSE; RECOVERY; ALGORITHM; PURSUIT;
D O I
10.1109/TSP.2011.2163402
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider the compressive sensing of a sparse or compressible x is an element of R-M signal. We explicitly construct a class of measurement matrices inspired by coding theory, referred to as low density frames, and develop decoding algorithms that produce an accurate estimate (x) over cap even in the presence of additive noise. Low density frames are sparse matrices and have small storage requirements. Our decoding algorithms can be implemented in O(Md-v(2)) complexity, where d(v) is the left degree of the underlying bipartite graph. Simulation results are provided, demonstrating that our approach outperforms state-of-the-art recovery algorithms for numerous cases of interest. In particular, for Gaussian sparse signals and Gaussian noise, we are within 2-dB range of the theoretical lower bound in most cases.
引用
收藏
页码:5369 / 5379
页数:11
相关论文
共 53 条
  • [1] Akcakaya M., 2007, IEEE INT S INF THEOR
  • [2] A frame construction and a universal distortion bound for sparse representations
    Akcakaya, Mehmet
    Tarokh, Vahid
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (06) : 2443 - 2450
  • [3] Shannon-Theoretic Limits on Noisy Compressive Sampling
    Akcakaya, Mehmet
    Tarokh, Vahid
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (01) : 492 - 504
  • [4] ANDREWS DF, 1974, J ROY STAT SOC B MET, V36, P99
  • [5] SPARLS: The Sparse RLS Algorithm
    Babadi, Behtash
    Kalouptsidis, Nicholas
    Tarokh, Vahid
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (08) : 4013 - 4025
  • [6] Model-Based Compressive Sensing
    Baraniuk, Richard G.
    Cevher, Volkan
    Duarte, Marco F.
    Hegde, Chinmay
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (04) : 1982 - 2001
  • [7] Bayesian Compressive Sensing Via Belief Propagation
    Baron, Dror
    Sarvotham, Shriram
    Baraniuk, Richard G.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (01) : 269 - 280
  • [8] Berinde R., 2008, ALL C COMM CONTR COM
  • [9] Sequential Sparse Matching Pursuit
    Berinde, Radu
    Indyk, Piotr
    [J]. 2009 47TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING, VOLS 1 AND 2, 2009, : 36 - +
  • [10] Bayesian wavelet-based image deconvolution: A GEM algorithm exploiting a class of heavy-tailed priors
    Bioucas-Dias, JM
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (04) : 937 - 951