Decomposition of the lattice vertex operator algebra V√2Al

被引:20
作者
Lam, CH [1 ]
Yamada, H
机构
[1] Natl Cheng Kung Univ, Dept Math, Tainan 701, Taiwan
[2] Hitotsubashi Univ, Dept Math, Tokyo 1868601, Japan
关键词
D O I
10.1016/S0021-8693(03)00507-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by the work of Dong et al. [Associative subalgebras of Griess algebra and related topics, in: J. Ferrar, K. Harada (Eds.), Proc. Conf. Monster and Lie Algebras, de Gruyter, Berlin, 1998], we study a decomposition of the lattice vertex operator algebra V-root2Al as a direct sum of irreducible modules of a certain tensor product of Virasoro, vertex operator algebras and a parafermion algebra Wl+1 (2l/(l + 3)). We find that the vertex operator algebra V-root2Al contains a subalgebra isomorphic to a parafermion algebra Wl+1 (2l/(l + 3)) of central charge 2l/(l + 3). A complete decomposition of the vertex operator algebra V-root2Al as a direct sum of irreducible modules of W = L(c(1), 0) circle times L(c(2), 0) circle times(...)circle times L(c(l), 0) circle times Wl+1 (2l/(l + 3)), where c(i), i = 1,..., l, is given by the discrete series c(i) = 1 - 6/(i + 2)(i + 3), is also obtained. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:614 / 624
页数:11
相关论文
共 23 条
[1]  
[Anonymous], P C MONST LIE ALG OH
[2]  
[Anonymous], 1987, ADV SER MATH PHYS
[3]   Decomposition of the vertex operator algebra V√2A3 [J].
Dong, C ;
Lam, CH ;
Yamada, H .
JOURNAL OF ALGEBRA, 1999, 222 (02) :500-510
[4]  
Dong C., 1994, PROC S PURE MATH, V56, P295
[5]  
Dong C., 1993, PROGR MATH, V112
[6]   CONFORMAL QUANTUM-FIELD THEORY MODELS IN 2 DIMENSIONS HAVING Z3 SYMMETRY [J].
FATEEV, VA ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1987, 280 (04) :644-660
[7]  
Frenkel I., 1988, Pure and Applied Mathematics
[8]   VERTEX OPERATOR-ALGEBRAS ASSOCIATED TO REPRESENTATIONS OF AFFINE AND VIRASORO ALGEBRAS [J].
FRENKEL, IB ;
ZHU, YC .
DUKE MATHEMATICAL JOURNAL, 1992, 66 (01) :123-168
[9]  
GODDARD P, 1985, PHYS LETT B, V152, P88, DOI 10.1016/0370-2693(85)91145-1
[10]   THE FRIENDLY GIANT [J].
GRIESS, RL .
INVENTIONES MATHEMATICAE, 1982, 69 (01) :1-102