Differentiability of Lyapunov Exponents

被引:2
作者
Ferraiol, Thiago F. [1 ]
San Martin, Luiz A. B. [1 ]
机构
[1] Univ Estadual Campinas, Imecc, Dept Matemat, Rua Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP, Brazil
关键词
Semi-simple Lie groups; Lyapunov exponents; Multiplicative ergodic theorem; Flag manifolds; Differentiability; SETS; FLOWS;
D O I
10.1007/s10883-019-09448-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove differentiability of certain linear combinations of the Lyapunov spectra of a flow on a principal bundle of a semi-simple Lie group. The specific linear combinations that yield differentiability are determined by the finest Morse decomposition on the flag bundles. Differentiability is taken with respect to a differentiable structure on the gauge group, which is a Banach-Lie group.
引用
收藏
页码:289 / 310
页数:22
相关论文
共 18 条
[1]  
Alves LA, CONDITIONS EQUALITY
[2]   MULTIPLICATIVE ERGODIC THEOREM ON FLAG BUNDLES OF SEMI-SIMPLE LIE GROUPS [J].
Alves, Luciana A. ;
San Martin, Luiz A. B. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (04) :1247-1273
[3]  
Barreira L, 2007, ENCYCLOP MATH APPL, P1
[4]   Chain transitive sets for flows on flag bundles [J].
Barros, Carlos J. Braga ;
San Martin, Luiz A. B. .
FORUM MATHEMATICUM, 2007, 19 (01) :19-60
[5]  
Ferraiol T., DIFFERENTIABLE STRUC
[6]   MAXIMALITY OF COMPRESSION SEMIGROUPS [J].
HILGERT, J ;
NEEB, KH .
SEMIGROUP FORUM, 1995, 50 (02) :205-222
[7]  
Palais R. S., 1968, Foundations of Global Non-linear Analysis
[8]  
PATRAO M., 2007, DISCRETE CONT DYN-A, V17, P113
[9]   Conley indexes and stable sets for flows on flag bundles [J].
Patrao, Mauro ;
Martin, Luiz A. B. San ;
Seco, Lucas .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2009, 24 (02) :249-276
[10]   ANALYCITY PROPERTIES OF THE CHARACTERISTIC EXPONENTS OF RANDOM MATRIX PRODUCTS [J].
RUELLE, D .
ADVANCES IN MATHEMATICS, 1979, 32 (01) :68-80