Magnetic and structural properties of fcc/hcp bi-crystalline multilayer Co nanowire arrays prepared by controlled electroplating

被引:49
作者
Pirota, K. R. [1 ]
Beron, F. [1 ]
Zanchet, D. [2 ]
Rocha, T. C. R. [2 ]
Navas, D. [3 ]
Torrejon, J. [1 ]
Vazquez, M. [3 ]
Knobel, M. [1 ]
机构
[1] Univ Estadual Campinas, UNICAMP, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil
[2] LNLS, BR-13083970 Campinas, SP, Brazil
[3] CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain
基金
巴西圣保罗研究基金会;
关键词
DOMAIN-WALL; NICKEL; PROPAGATION; DYNAMICS; ALUMINA; WIRE;
D O I
10.1063/1.3553865
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report on the structural and magnetic properties of crystalline bi-phase Co nanowires, electrodeposited into the pores of anodized alumina membranes, as a function of their length. Co nanowires present two different coexistent crystalline structures (fcc and hcp) that can be controlled by the time of pulsed electrodeposition. The fcc crystalline phase grows at the early stage and is present at the bottom of all the nanowires, strongly influencing their magnetic behavior. Both structural and magnetic characterizations indicate that the length of the fcc phase is constant at around 260-270 nm. X-ray diffraction measurements revealed a strong preferential orientation (texture) in the (1 0-1 0) direction for the hcp phase, which increases the nanowire length as well as crystalline grain size, degree of orientation, and volume fraction of oriented material. The first-order reversal curve (FORC) method was used to infer both qualitatively and quantitatively the complex magnetization reversal of the nanowires. Under the application of a magnetic field parallel to the wires, the magnetization reversal of each region is clearly distinguishable; the fcc phase creates a high coercive contribution without an interaction field, while the hcp phase presents a smaller coercivity and undergoes a strong antiparallel interaction field from neighboring wires. (C) 2011 American Institute of Physics. [doi:10.1063/1.3553865]
引用
收藏
页数:6
相关论文
共 25 条
[1]   Magnetic domain-wall dynamics in a submicrometre ferromagnetic structure [J].
Atkinson, D ;
Allwood, DA ;
Xiong, G ;
Cooke, MD ;
Faulkner, CC ;
Cowburn, RP .
NATURE MATERIALS, 2003, 2 (02) :85-87
[2]   Dynamics of field-driven domain-wall propagation in ferromagnetic nanowires [J].
Beach, GSD ;
Nistor, C ;
Knutson, C ;
Tsoi, M ;
Erskine, JL .
NATURE MATERIALS, 2005, 4 (10) :741-744
[3]   Magnetostatic interactions and coercivities of ferromagnetic soft nanowires in uniform length arrays [J].
Beron, F. ;
Clime, L. ;
Ciureanu, M. ;
Menard, D. ;
Cochrane, R. W. ;
Yelon, A. .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2008, 8 (06) :2944-2954
[4]  
Béron F, 2010, ELECTRODEPOSITED NANOWIRES AND THEIR APPLICATIONS, P167
[5]   Reversible and quasireversible information in first-order reversal curve diagrams [J].
Beron, Fanny ;
Clime, Liviu ;
Ciureanu, Mariana ;
Menard, David ;
Cochrane, Robert W. ;
Yelon, Arthur .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (09)
[6]   First-order reversal curve diagrams of magnetic entities with mean interaction field:: A physical analysis perspective [J].
Beron, Fanny ;
Menard, David ;
Yelon, Arthur .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (07)
[7]  
Budendorff J. L., 2000, EUR PHYS J B, V17, P635
[8]   Spintronics - Turbulence ahead [J].
Cowburn, R ;
Petit, D .
NATURE MATERIALS, 2005, 4 (10) :721-722
[9]   CORRECTION OF INTENSITIES FOR PREFERRED ORIENTATION IN POWDER DIFFRACTOMETRY - APPLICATION OF THE MARCH MODEL [J].
DOLLASE, WA .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1986, 19 (pt 4) :267-272
[10]   Magnetization processes in nickel and cobalt electrodeposited nanowires [J].
Ferre, R ;
Ounadjela, K ;
George, JM ;
Piraux, L ;
Dubois, S .
PHYSICAL REVIEW B, 1997, 56 (21) :14066-14075