On the Diophantine equation F(x) = G(y)

被引:22
作者
Tengely, S [1 ]
机构
[1] Leiden Univ, Math Inst, NL-2300 RA Leiden, Netherlands
关键词
Diophantine equations; Runge's method;
D O I
10.4064/aa110-2-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:185 / 200
页数:16
相关论文
共 21 条
[1]   RUNGES THEOREM [J].
AYAD, M .
ACTA ARITHMETICA, 1991, 58 (02) :203-209
[2]   Irreducibility of polynomials and arithmetic progressions with equal products of terms [J].
Beukers, F ;
Shorey, TN ;
Tijdeman, R .
NUMBER THEORY IN PROGRESS, VOLS 1 AND 2: VOL 1: DIOPHANTINE PROBLEMS AND POLYNOMIALS; VOL 2: ELEMENTARY AND ANALYTIC NUMBER THEORY;, 1999, :11-26
[3]   The Diophantine equation f(x)=g(y) [J].
Bilu, YF ;
Tichy, RF .
ACTA ARITHMETICA, 2000, 95 (03) :261-288
[4]  
COLLINS GE, 1976, P 1976 ACM S SYMB AL, P272
[5]   EQUATIONS OF FORM F(X)=G(Y) [J].
DAVENPORT, H ;
SCHINZEL, A ;
LEWIS, DJ .
QUARTERLY JOURNAL OF MATHEMATICS, 1961, 12 (48) :304-&
[6]  
GRYTCZUK A., 1991, C MATH SOC J BOLYAI, V60, P329
[7]  
Hajdu L, 2000, PUBL MATH-DEBRECEN, V56, P391
[8]   DETERMINATION OF BOUNDS FOR THE SOLUTIONS TO THOSE BINARY DIOPHANTINE EQUATIONS THAT SATISFY THE HYPOTHESES OF RUNGE THEOREM [J].
HILLIKER, DL ;
STRAUS, EG .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 280 (02) :637-657
[9]  
LAURENT M, IN PRESS J NUMBER TH
[10]   EQUAL PRODUCTS OF CONSECUTIVE INTEGERS [J].
MACLEOD, RA ;
BARRODAL.I .
CANADIAN MATHEMATICAL BULLETIN, 1970, 13 (02) :255-&