Computational design of thermally stable and precipitation-hardened Al-Co-Cr-Fe-Ni-Ti high entropy alloys

被引:36
作者
Joseph, J. [1 ]
Senadeera, M. [2 ]
Chao, Q. [1 ,3 ]
Shamlaye, K. F. [1 ]
Rana, S. [2 ]
Gupta, S. [2 ]
Venkatesh, S. [2 ]
Hodgson, P. [1 ]
Barnett, M. [1 ]
Fabijanic, D. [1 ]
机构
[1] Deakin Univ, IFM, Geelong, Vic, Australia
[2] Deakin Univ, Appl Artificial Intelligence Inst A2I2, Geelong, Vic, Australia
[3] Deakin Univ, Sch Engn, Geelong, Vic, Australia
关键词
High entropy superalloy; Computational alloy design; High-temperature strength; Coarsening resistance; HIGH-TEMPERATURE PROPERTIES; MECHANICAL-PROPERTIES; STRENGTHENED MEDIUM; TENSILE PROPERTIES; STABILITY; EVOLUTION; BEHAVIOR; MICROSTRUCTURE; NANOPARTICLES; DEFORMATION;
D O I
10.1016/j.jallcom.2021.161496
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A multi-dimensional Al-Co-Cr-Fe-Ni-Ti alloy space with a Ni-3(Al, Ti)-type ordered (gamma') phase in a disordered face-centered cubic matrix phase (gamma) without detrimental intermetallic phases at 800 degrees C was obtained by integrating calculated-phase diagrams and a computational framework. The solubility limits of alloying elements in the compositional space were defined for the gamma-gamma' structure at 800 degrees C. The present model was calibrated with high entropy superalloys (HESAs) from the literature and experimentally validated by the synthesis of HESAs with an extended range of Al (10.5-15 at%) and (Al+Ti)-concentrations (up to 20 at%). The Ni51Co18Fe5Cr10Al12Ti4 HESA developed using the present approach exhibited a gamma'-volume fraction of 63%,.'-dissolution temperature of 1188 degrees C and showed excellent coarsening resistance and strength re-tention at 800 degrees C. The current approach aids the high-throughput design of potential high-performance Al-Co-Cr-Fe-Ni-Ti HESAs for high-temperature structural applications without the need for expensive alloying elements. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 70 条
[1]   On the effect of Fe in L12 strengthened Al-Co-Cr-Fe-Ni-Ti complex concentrated alloy [J].
Adil, Shaik ;
Suraj, M. V. ;
Pillari, Lava Kumar ;
Sridar, Soumya ;
Nagini, M. ;
Pradeep, K. G. ;
Murty, B. S. .
MATERIALIA, 2020, 14
[2]   A scrap-tolerant alloying concept based on high entropy alloys [J].
Barnett, M. R. ;
Senadeera, M. ;
Fabijanic, D. ;
Shamlaye, K. F. ;
Joseph, J. ;
Kada, S. R. ;
Rana, S. ;
Gupta, S. ;
Venkatesh, S. .
ACTA MATERIALIA, 2020, 200 :735-744
[3]   The fcc solid solution stability in the Co-Cr-Fe-Mn-Ni multi-component system [J].
Bracq, Guillaume ;
Laurent-Brocq, Mathilde ;
Perriere, Loic ;
Pires, Remy ;
Joubert, Jean-Marc ;
Guillot, Ivan .
ACTA MATERIALIA, 2017, 128 :327-336
[4]   The formation of cellular precipitate and its effect on the tensile properties of a precipitation strengthened high entropy alloy [J].
Chang, Yao-Jen ;
Yeh, An-Chou .
MATERIALS CHEMISTRY AND PHYSICS, 2018, 210 :111-119
[5]   The evolution of microstructures and high temperature properties of AlxCo1.5CrFeNi1.5Tiy high entropy alloys [J].
Chang, Yao-Jen ;
Yeh, An-Chou .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 653 :379-385
[6]   Synergistic effect of Ti and Al on L12-phase design in CoCrFeNi-based high entropy alloys [J].
Chen, Da ;
He, Feng ;
Han, Bin ;
Wu, Qingfeng ;
Tong, Yang ;
Zhao, Yilu ;
Wang, Zhijun ;
Wang, Jincheng ;
Kai, Ji-jung .
INTERMETALLICS, 2019, 110
[7]   A review on fundamental of high entropy alloys with promising high-temperature properties [J].
Chen, Jian ;
Zhou, Xueyang ;
Wang, Weili ;
Liu, Bing ;
Lv, Yukun ;
Yang, Wei ;
Xu, Dapeng ;
Liu, Yong .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 760 :15-30
[8]   Designing high entropy superalloys for elevated temperature application [J].
Chen, Yung-Ta ;
Chang, Yao-Jen ;
Murakami, Hideyuki ;
Gorsse, Stephane ;
Yeh, An-Chou .
SCRIPTA MATERIALIA, 2020, 187 :177-182
[9]   Enhancing strength and strain hardenability via deformation twinning in fcc-based high entropy alloys reinforced with intermetallic compounds [J].
Choudhuri, Deep ;
Gwalani, Bharat ;
Gorsse, Stephane ;
Komarasamy, Mageshwari ;
Mantri, Srinivas A. ;
Srinivasan, Srivilliputhur G. ;
Mishra, Rajiv S. ;
Banerjee, Rajarshi .
ACTA MATERIALIA, 2019, 165 :420-430
[10]   High-Temperature Tensile Strength of Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy (High-Entropy Alloy) [J].
Daoud, H. M. ;
Manzoni, A. M. ;
Wanderka, N. ;
Glatzel, U. .
JOM, 2015, 67 (10) :2271-2277