Nitrogen enrichment and plant communities

被引:149
作者
Cleland, Elsa E. [1 ]
Harpole, W. Stanley [2 ]
机构
[1] Univ Calif San Diego, Ecol Behav & Evolut Sect, 9500 Gilman Dr 0116, La Jolla, CA 92093 USA
[2] Iowa State Univ, Ames, IA USA
来源
YEAR IN ECOLOGY AND CONSERVATION BIOLOGY 2010 | 2010年 / 1195卷
关键词
nitrogen; phosphorus; community; diversity; richness; composition; multiple resource limitation; stoichiometry; SPECIES-DIVERSITY; CRITICAL LOADS; UNITED-STATES; N DEPOSITION; ATMOSPHERIC DEPOSITION; PHOSPHORUS LIMITATION; NUTRIENT LIMITATION; RESOURCE CONTROL; GRASSLAND; RICHNESS;
D O I
10.1111/j.1749-6632.2010.05458.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Anthropogenic nitrogen (N) enrichment of many ecosystems throughout the globe has important ramifications for plant communities. Observational and experimental studies frequently find species richness declines with N enrichment, in concert with increasing primary production. Nitrogen enrichment also reorders species composition, including species turnover through gains and losses of species, changes in dominance and rarity, and shifts in the relative abundance of particular functional groups. Nitrogen has traditionally been considered the primary limiting nutrient for plant growth in terrestrial ecosystems, but recent synthetic work suggests that colimitation by phosphorus (P), water, and other resources is widespread, consistent with theoretical predictions. At the same time, disproportionate increases in ecosystem N input are expected to exacerbate limitation by P and other resources. Similarly, synthetic research has pointed out the important role of consumers and pathogens in determining plant community structure, especially with respect to shifting resource availability. We argue here that environmental and biotic contexts, including limitation by multiple resources, herbivores and pathogens, play important roles in our understanding of plant community responses to N enrichment.
引用
收藏
页码:46 / +
页数:6
相关论文
共 137 条
[1]   Nitrogen saturation in temperate forest ecosystems - Hypotheses revisited [J].
Aber, J ;
McDowell, W ;
Nadelhoffer, K ;
Magill, A ;
Berntson, G ;
Kamakea, M ;
McNulty, S ;
Currie, W ;
Rustad, L ;
Fernandez, I .
BIOSCIENCE, 1998, 48 (11) :921-934
[2]   Atmospheric nitrogen deposition in the northern Chihuahuan desert:: Temporal trends and potential consequences [J].
Baez, S. ;
Fargione, J. ;
Moore, D. I. ;
Collins, S. L. ;
Gosz, J. R. .
JOURNAL OF ARID ENVIRONMENTS, 2007, 68 (04) :640-651
[3]   Plant species and nitrogen effects on soil biological properties of temperate upland grasslands [J].
Bardgett, RD ;
Mawdsley, JL ;
Edwards, S ;
Hobbs, PJ ;
Rodwell, JS ;
Davies, WJ .
FUNCTIONAL ECOLOGY, 1999, 13 (05) :650-660
[4]  
Baron JS, 2006, ECOL APPL, V16, P433, DOI 10.1890/1051-0761(2006)016[0433:HNDTDA]2.0.CO
[5]  
2
[6]  
Bedford BL, 1999, ECOLOGY, V80, P2151, DOI 10.1890/0012-9658(1999)080[2151:PINAAP]2.0.CO
[7]  
2
[8]   RESOURCE LIMITATION IN PLANTS - AN ECONOMIC ANALOGY [J].
BLOOM, AJ ;
CHAPIN, FS ;
MOONEY, HA .
ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS, 1985, 16 :363-392
[9]   The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation [J].
Bobbink, R ;
Hornung, M ;
Roelofs, JGM .
JOURNAL OF ECOLOGY, 1998, 86 (05) :717-738
[10]  
Bowman WD, 2006, ECOL APPL, V16, P1183, DOI 10.1890/1051-0761(2006)016[1183:NCLFAV]2.0.CO