Conductance distributions in disordered quantum spin-Hall systems

被引:9
作者
Kobayashi, K. [1 ]
Ohtsuki, T. [1 ]
Obuse, H. [2 ]
Slevin, K. [3 ]
机构
[1] Sophia Univ, Dept Phys, Tokyo 1028554, Japan
[2] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan
[3] Osaka Univ, Dept Phys, Osaka 5600043, Japan
来源
PHYSICAL REVIEW B | 2010年 / 82卷 / 16期
关键词
POINT-CONTACT CONDUCTANCES; FLUCTUATIONS; TRANSITIONS;
D O I
10.1103/PhysRevB.82.165301
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study numerically the charge conductance distributions of disordered quantum spin-Hall (QSH) systems using a quantum network model. We have found that the conductance distribution at the metal-QSH insulator transition is clearly different from that at the metal-ordinary insulator transition. Thus the critical conductance distribution is sensitive not only to the boundary condition but also to the presence of edge states in the adjacent insulating phase. We have also calculated the point-contact conductance. Even when the two-terminal conductance is approximately quantized, we find large fluctuations in the point-contact conductance. Furthermore, we have found a semicircular relation between the average of the point-contact conductance and its fluctuation.
引用
收藏
页数:8
相关论文
共 34 条
[1]   LOCALIZATION AND FLUCTUATIONS IN THE QUANTUM HALL REGIME [J].
ANDO, T .
PHYSICAL REVIEW B, 1994, 49 (07) :4679-4688
[2]   Anderson transition in two-dimensional systems with spin-orbit coupling [J].
Asada, Y ;
Slevin, K ;
Ohtsuki, T .
PHYSICAL REVIEW LETTERS, 2002, 89 (25)
[3]  
AVISHAI Y, COMMUNICATION
[4]   Quantum spin hall effect [J].
Bernevig, BA ;
Zhang, SC .
PHYSICAL REVIEW LETTERS, 2006, 96 (10)
[5]   PERCOLATION, QUANTUM TUNNELLING AND THE INTEGER HALL-EFFECT [J].
CHALKER, JT ;
CODDINGTON, PD .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1988, 21 (14) :2665-2679
[6]  
Dorokhov O.N., 1982, Pisma Zh. Eksp. Teor. Fiz, V36, P259
[7]  
Gertsenshtein ME., 1959, Theory Probab. Appl, V4, P391, DOI [10.1137/1104038, DOI 10.1137/1104038]
[8]   Quantum Hall Transition in Real Space: From Localized to Extended States [J].
Hashimoto, K. ;
Sohrmann, C. ;
Wiebe, J. ;
Inaoka, T. ;
Meier, F. ;
Hirayama, Y. ;
Roemer, R. A. ;
Wiesendanger, R. ;
Morgenstern, M. .
PHYSICAL REVIEW LETTERS, 2008, 101 (25)
[9]  
HIKAMI S, 1980, PROG THEOR PHYS, V63, P707, DOI 10.1143/PTP.63.707
[10]   SCALING THEORY OF THE INTEGER QUANTUM HALL-EFFECT [J].
HUCKESTEIN, B .
REVIEWS OF MODERN PHYSICS, 1995, 67 (02) :357-396