Virtual Machine Migration Strategy Based on Multi-Agent Deep Reinforcement Learning

被引:4
|
作者
Dai, Yu [1 ]
Zhang, Qiuhong [1 ]
Yang, Lei [2 ]
机构
[1] Northeastern Univ, Software Coll, Shenyang 110169, Peoples R China
[2] Northeastern Univ, Comp Sci & Engn, Shenyang 110169, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 17期
关键词
mobile edge computing; deep reinforcement learning; virtual machine migration; EFFICIENT RESOURCE-ALLOCATION; MOBILE;
D O I
10.3390/app11177993
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Mobile edge computing is a new computing model, which pushes cloud computing power from centralized cloud to network edge. However, with the sinking of computing power, user mobility brings new challenges: since it is usually unstable, services should be dynamically migrated between multiple edge servers to maintain service performance, that is, user-perceived latency. Considering that Mobile Edge Computing is a highly distributed computing environment and it is difficult to synchronize information between servers, in order to ensure the real-time performance of the migration strategy, a virtual machine migration strategy based on Multi-Agent Deep Reinforcement Learning is proposed in this paper. The method of centralized training and distributed execution is adopted, that is, the transfer action is guided by the global information during training, and only the local observation information is needed to obtain the transfer action. Compared with the centralized control method, the proposed method alleviates communication bottleneck. Compared with other distributed control methods, this method only needs local information, does not need communication between servers, and speeds up the perception of the current environment. Migration strategies can be generated faster. Simulation results show that the proposed strategy is better than the contrast strategy in terms of convergence and energy consumption.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Multi-agent deep reinforcement learning strategy for distributed energy
    Xi, Lei
    Sun, Mengmeng
    Zhou, Huan
    Xu, Yanchun
    Wu, Junnan
    Li, Yanying
    MEASUREMENT, 2021, 185
  • [2] Survey of Multi-Agent Strategy Based on Reinforcement Learning
    Chen, Liang
    Guo, Ting
    Liu, Yun-ting
    Yang, Jia-ming
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 604 - 609
  • [3] A Data Enhancement Strategy for Multi-Agent Cooperative Hunting based on Deep Reinforcement Learning
    Gao, Zhenkun
    Dai, Xiaoyan
    Yao, Meibao
    Xiao, Xueming
    2023 IEEE 6TH INTERNATIONAL CONFERENCE ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS, ICPS, 2023,
  • [4] Ship cooperative collision avoidance strategy based on multi-agent deep reinforcement learning
    Sui L.-R.
    Gao S.
    He W.
    Kongzhi yu Juece/Control and Decision, 2023, 38 (05): : 1395 - 1402
  • [5] A Multi-Agent Deep Reinforcement Learning Framework for VWAP Strategy Optimization
    Ye, Jiaqi
    Li, Xiaodong
    Wang, Yingying
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [6] Eavesdropping Game Based on Multi-Agent Deep Reinforcement Learning
    Guo, Delin
    Tang, Lan
    Yang, Lvxi
    Liang, Ying-Chang
    IEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC, 2022, 2022-July
  • [7] Eavesdropping Game Based on Multi-Agent Deep Reinforcement Learning
    Guo, Delin
    Tang, Lan
    Yang, Lvxi
    Liang, Ying-Chang
    2022 IEEE 23RD INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATION (SPAWC), 2022,
  • [8] Formation Control of Multi-agent Based on Deep Reinforcement Learning
    Pan, Chao
    Nian, Xiaohong
    Dai, Xunhua
    Wang, Haibo
    Xiong, Hongyun
    PROCEEDINGS OF 2022 INTERNATIONAL CONFERENCE ON AUTONOMOUS UNMANNED SYSTEMS, ICAUS 2022, 2023, 1010 : 1149 - 1159
  • [9] Multi-ship collaborative collision avoidance strategy based on multi-agent deep reinforcement learning
    Huang R.
    Luo L.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2024, 30 (06): : 1972 - 1988
  • [10] HALFTONING WITH MULTI-AGENT DEEP REINFORCEMENT LEARNING
    Jiang, Haitian
    Xiong, Dongliang
    Jiang, Xiaowen
    Yin, Aiguo
    Ding, Li
    Huang, Kai
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 641 - 645