Einstein metrics on exotic spheres in dimensions 7, 11, and 15

被引:18
作者
Boyer, CP [1 ]
Galicki, K
Kollár, J
Thomas, E
机构
[1] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[3] Univ Melbourne, Dept Physiol, Parkville, Vic 3010, Australia
基金
美国国家科学基金会;
关键词
Einstein metrics; Sasakian manifolds; exotic spheres; Kahler-Einstein orbifolds;
D O I
10.1080/10586458.2005.10128907
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a recent article the first three authors proved that in dimension 4m + 1 all homotopy spheres that bound parallelizable manifolds admit Einstein metrics of positive scalar curvature which, in fact, are Sasakian-Einstein. They also conjectured that all such homotopy spheres in dimension 4m-1, m >= 2 admit Sasakian-Einstein metrics [Boyer et al. 041, and proved this for the simplest case, namely dimension 7. In this paper we describe computer programs that show that this conjecture is also true for 11-spheres and 15-spheres. Moreover, a program is given that determines the partition of the 8,610 deformation classes of Sasakian-Einstein metrics into the 28 distinct oriented diffornorphism types in dimension 7.
引用
收藏
页码:59 / 64
页数:6
相关论文
共 11 条
[1]  
BRIESKORN E, 1966, INVENT MATH, V2, P1
[2]  
CHARLES P, 2004, IN PRESS ANN MATH
[3]  
CHARLES P, 2001, J DIFFER GEOM, V57, P443
[4]  
Graham R.L., 1989, Concrete Mathematics
[5]  
HIRZEBRUCH F, 1971, LECT NOTES MATH, V209, P207
[6]   GROUPS OF HOMOTOPY SPHERES .1 [J].
KERVAIRE, MA ;
MILNOR, JW .
ANNALS OF MATHEMATICS, 1963, 77 (03) :504-&
[7]  
Milnor J., 1968, Ann. Math. Studies, V61
[8]  
Sloane N. J., 2003, ON LINE ENCY INTEGER
[9]   ON STRUCTURE OF MANIFOLDS [J].
SMALE, S .
AMERICAN JOURNAL OF MATHEMATICS, 1962, 84 (03) :387-&
[10]  
SOUNDARARAJAN K, 2005, APPROXIMATING BELOW